4.6 Article

The Combined Treatment with Chemotherapeutic Agents and the Dualsteric Muscarinic Agonist Iper-8-Naphthalimide Affects Drug Resistance in Glioblastoma Stem Cells

Journal

CELLS
Volume 10, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/cells10081877

Keywords

M2 muscarinic receptor; glioblastoma; cancer stem cells; drug resistance; efflux pumps; chemotherapy

Categories

Funding

  1. Ateneo Sapienza and Network CIB 2018 Funds

Ask authors/readers for more resources

The study demonstrated that the M2 agonist N-8-Iper in combination with conventional chemotherapy drugs can effectively inhibit cell growth in two GSC lines by downregulating ABC drug efflux pumps expression levels, suggesting a promising pharmacological approach to overcome drug resistance in GBM therapy.
Background: Glioblastoma multiforme (GBM) is characterized by heterogeneous cell populations. Among these, the Glioblastoma Stem Cells (GSCs) fraction shares some similarities with Neural Stem Cells. GSCs exhibit enhanced resistance to conventional chemotherapy drugs. Our previous studies demonstrated that the activation of M2 muscarinic acetylcholine receptors (mAChRs) negatively modulates GSCs proliferation and survival. The aim of the present study was to analyze the ability of the M2 dualsteric agonist Iper-8-naphthalimide (N-8-Iper) to counteract GSCs drug resistance. Methods: Chemosensitivity to M2 dualsteric agonist N-8-Iper and chemotherapy drugs such as temozolomide, doxorubicin, or cisplatin was evaluated in vitro by MTT assay in two different GSC lines. Drug efflux pumps expression was evaluated by RT-PCR and qRT-PCR. Results: By using sub-toxic concentrations of N-8-Iper combined with the individual chemotherapeutic agents, we found that only low doses of the M2 agonist combined with doxorubicin or cisplatin or temozolomide were significantly able to counteract cell growth in both GSC lines. Moreover, we evaluated as the exposure to high and low doses of N-8-Iper downregulated the ATP-binding cassette (ABC) drug efflux pumps expression levels. Conclusions: Our results revealed the ability of the investigated M2 agonist to counteract drug resistance in two GSC lines, at least partially by downregulating the ABC drug efflux pumps expression. The combined effects of low doses of conventional chemotherapy and M2 agonists may thus represent a novel promising pharmacological approach to impair the GSC-drug resistance in the GBM therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available