4.6 Review

Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment

Journal

CANCERS
Volume 13, Issue 18, Pages -

Publisher

MDPI
DOI: 10.3390/cancers13184570

Keywords

zinc oxide nanoparticles; cancer; ROS; drug delivery; diagnosis; anticancerous activity

Categories

Funding

  1. ARD2020 Biopharmaceutical program of the Region Centre Val de Loire (ETOPOCentre project)

Ask authors/readers for more resources

Despite advancements in medicine, cancer remains a deadly and somber disease caused by uncontrolled cell proliferation. Traditional medications and chemotherapies have limitations such as reduced bioavailability and significant side effects. Nanotechnology has rapidly evolved and offers potential in healthcare, with nanoscale materials showing promise in cancer treatment due to their low risk. Zinc oxide nanoparticles have demonstrated their potential in diagnosing and treating various cancers due to their biocompatibility and unique properties. Their ability to induce reactive oxygen species in cancer cells, leading to apoptosis, makes them effective in targeted drug delivery.
Simple Summary Despite breakthroughs in medicine, cancer remains one of the most feared diseases. Traditionally, chemotherapies have been the treatment of choice. However, concerns about stability and poor solubility prevent them from being widely used. Destruction of healthy cells, hair loss, and drug resistance are all common side effects. In this aspect, nanotechnology opens up new avenues for cancer treatment. ZnO NPs are one of the most valuable metal oxide nanoparticles in cancer treatment owing to their high biocompatibility and low toxicity. The ability of ZnO NPs to selectively trigger the formation of reactive oxygen species and induce apoptosis has been critically appraised in this review. They are also the best contenders for diagnosis and tailored drug delivery in cancer therapeutics. Here, we extensively summarize the role of ZnO NPs in cancer diagnosis, target drug delivery, and treatment, which will help in future research advancements in the field of cancer theranostic. Cancer is regarded as one of the most deadly and mirthless diseases and it develops due to the uncontrolled proliferation of cells. To date, varieties of traditional medications and chemotherapies have been utilized to fight tumors. However, their immense drawbacks, such as reduced bioavailability, insufficient supply, and significant adverse effects, make their use limited. Nanotechnology has evolved rapidly in recent years and offers a wide spectrum of applications in the healthcare sectors. Nanoscale materials offer strong potential for curing cancer as they pose low risk and fewer complications. Several metal oxide NPs are being developed to diagnose or treat malignancies, but zinc oxide nanoparticles (ZnO NPs) have remarkably demonstrated their potential in the diagnosis and treatment of various types of cancers due to their biocompatibility, biodegradability, and unique physico-chemical attributes. ZnO NPs showed cancer cell specific toxicity via generation of reactive oxygen species and destruction of mitochondrial membrane potential, which leads to the activation of caspase cascades followed by apoptosis of cancerous cells. ZnO NPs have also been used as an effective carrier for targeted and sustained delivery of various plant bioactive and chemotherapeutic anticancerous drugs into tumor cells. In this review, at first we have discussed the role of ZnO NPs in diagnosis and bio-imaging of cancer cells. Secondly, we have extensively reviewed the capability of ZnO NPs as carriers of anticancerous drugs for targeted drug delivery into tumor cells, with a special focus on surface functionalization, drug-loading mechanism, and stimuli-responsive controlled release of drugs. Finally, we have critically discussed the anticancerous activity of ZnO NPs on different types of cancers along with their mode of actions. Furthermore, this review also highlights the limitations and future prospects of ZnO NPs in cancer theranostic.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available