4.6 Article

Challenges in the Use of Artificial Intelligence for Prostate Cancer Diagnosis from Multiparametric Imaging Data

Journal

CANCERS
Volume 13, Issue 16, Pages -

Publisher

MDPI
DOI: 10.3390/cancers13163944

Keywords

prostate cancer; AI; mp-MRI; PI-RADS; public databases

Categories

Ask authors/readers for more resources

Prostate Cancer is a significant threat to men's health, and accurate diagnosis is crucial for proper treatment. Artificial Intelligence models can assist radiologists in assessing tumor aggressiveness, but require high-quality images to avoid overfitting. Efforts have been made to standardize the evaluation of multiparametric MRI images to detect prostate cancer, with PI-RADS contributing notably, yet facing limitations in inter-reader reproducibility.
Simple Summary Prostate Cancer is one of the main threats to men's health. Its accurate diagnosis is crucial to properly treat patients depending on the cancer's level of aggressiveness. Tumor risk-stratification is still a challenging task due to the difficulties met during the reading of multi-parametric Magnetic Resonance Images. Artificial Intelligence models may help radiologists in staging the aggressiveness of the equivocal lesions, reducing inter-observer variability and evaluation time. However, these algorithms need many high-quality images to work efficiently, bringing up overfitting and lack of standardization and reproducibility as emerging issues to be addressed. This study attempts to illustrate the state of the art of current research of Artificial Intelligence methods to stratify prostate cancer for its clinical significance suggesting how widespread use of public databases could be a possible solution to these issues. Many efforts have been carried out for the standardization of multiparametric Magnetic Resonance (mp-MR) images evaluation to detect Prostate Cancer (PCa), and specifically to differentiate levels of aggressiveness, a crucial aspect for clinical decision-making. Prostate Imaging-Reporting and Data System (PI-RADS) has contributed noteworthily to this aim. Nevertheless, as pointed out by the European Association of Urology (EAU 2020), the PI-RADS still has limitations mainly due to the moderate inter-reader reproducibility of mp-MRI. In recent years, many aspects in the diagnosis of cancer have taken advantage of the use of Artificial Intelligence (AI) such as detection, segmentation of organs and/or lesions, and characterization. Here a focus on AI as a potentially important tool for the aim of standardization and reproducibility in the characterization of PCa by mp-MRI is reported. AI includes methods such as Machine Learning and Deep learning techniques that have shown to be successful in classifying mp-MR images, with similar performances obtained by radiologists. Nevertheless, they perform differently depending on the acquisition system and protocol used. Besides, these methods need a large number of samples that cover most of the variability of the lesion aspect and zone to avoid overfitting. The use of publicly available datasets could improve AI performance to achieve a higher level of generalizability, exploiting large numbers of cases and a big range of variability in the images. Here we explore the promise and the advantages, as well as emphasizing the pitfall and the warnings, outlined in some recent studies that attempted to classify clinically significant PCa and indolent lesions using AI methods. Specifically, we focus on the overfitting issue due to the scarcity of data and the lack of standardization and reproducibility in every step of the mp-MR image acquisition and the classifier implementation. In the end, we point out that a solution can be found in the use of publicly available datasets, whose usage has already been promoted by some important initiatives. Our future perspective is that AI models may become reliable tools for clinicians in PCa diagnosis, reducing inter-observer variability and evaluation time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available