4.6 Article

HGF/c-Met Inhibition as Adjuvant Therapy Improves Outcomes in an Orthotopic Mouse Model of Pancreatic Cancer

Journal

CANCERS
Volume 13, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/cancers13112763

Keywords

pancreatic cancer; metastasis; circulating rare cells; circulating pancreatic stellate cells; circulating tumour cells; circulating stromal cells; cancer-stromal interactions; pancreatic stellate cells; hepatocyte growth factor; adjuvant treatment; cancer-associated fibroblasts

Categories

Funding

  1. Avner Foundation [RG172336]

Ask authors/readers for more resources

The study demonstrates the efficacy of adjuvant HGF/c-Met inhibition in reducing the risk and rate of disease progression after pancreatic cancer resection, as well as reducing the counts of circulating pancreatic stellate cells (cPSCs). This study also confirms the existence of cPSCs in pancreatic cancer, providing important insights into potential treatment strategies.
Simple Summary Pancreatic cancer (PC) has a poor prognosis. Even though surgical resection and adjuvant chemotherapy is the most effective therapy, recurrence remains common. In this paper, we investigate the effectiveness of dual inhibition of hepatocyte growth factor (HGF) and c-MET when used as treatment after surgical resection of PC in mice. The HGF/c-Met pathway is a major mediator of pancreatic stellate cell (stromal cell)-PC cell interactions. Using single-cell RNA sequencing, we also investigated the existence of co-metastasising cells, circulating pancreatic stellate cells (cPSCs), as facilitators of PC metastasis. We found that HGF/c-Met inhibition reduced both the risk and rate of disease progression after resection and that this effect was associated with reduced cPSC counts. In conclusion, this study is the first to demonstrate the efficacy of adjuvant HGF/c-Met inhibition and is also the first to confirm the existence of cPSCs in PC. Background: Inhibition of hepatocyte growth factor (HGF)/c-MET pathway, a major mediator of pancreatic stellate cell (PSC)-PC cell interactions, retards local and distant cancer progression. This study examines the use of this treatment in preventing PC progression after resection. We further investigate the postulated existence of circulating PSCs (cPSCs) as a mediator of metastatic PC. Methods: Two orthotopic PC mouse models, produced by implantation of a mixture of luciferase-tagged human pancreatic cancer cells (AsPC-1), and human PSCs were used. Model 1 mice underwent distal pancreatectomy 3-weeks post-implantation (n = 62). One-week post-resection, mice were randomised to four treatments of 8 weeks: (i) IgG, (ii) gemcitabine (G), (iii) HGF/c-MET inhibition (HiCi) and (iv) HiCi + G. Tumour burden was assessed longitudinally by bioluminescence. Circulating tumour cells and cPSCs were enriched by filtration. Tumours of Model 2 mice progressed for 8 weeks prior to the collection of primary tumour, metastases and blood for single-cell RNA-sequencing (scRNA-seq). Results: HiCi treatments: (1) reduced both the risk and rate of disease progression after resection; (2) demonstrated an anti-angiogenic effect on immunohistochemistry; (3) reduced cPSC counts. cPSCs were identified using immunocytochemistry (alpha-smooth muscle actin+, pan-cytokeratin-, CD45-), and by specific PSC markers. scRNA-seq confirmed the existence of cPSCs and identified potential genes associated with development into cPSCs. Conclusions: This study is the first to demonstrate the efficacy of adjuvant HGF/c-Met inhibition for PC and provides the first confirmation of the existence of circulating PSCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available