4.6 Article

Albumin-Based Nanoparticles for the Delivery of Doxorubicin in Breast Cancer

Journal

CANCERS
Volume 13, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/cancers13123011

Keywords

bovine serum albumin (BSA); N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP); doxorubicin (Dox); breast cancer; cross-linker

Categories

Funding

  1. la Caixa Foundation [100010434, LCF/BQ/IN18/11660007]
  2. European Union [713673]
  3. Spanish Ministry of Economy and Competitiveness [SAF2017-87305-R]
  4. Comunidad de Madrid [IND2017/IND-7809, S2017/BMD-3867]
  5. Asociacion Espanola Contra el Cancer
  6. `Severo Ochoa' Programme for Centres of Excellence in RD (MINECO) [SEV-2016-0686]
  7. European Structural and Investment Fund
  8. IMDEA Nanociencia

Ask authors/readers for more resources

Albumin-based nanocarriers show great potential in breast cancer therapy, providing safety, biocompatibility, and specific cancer-targeting properties. They can be used to deliver a variety of drugs, representing a revolutionary approach in breast cancer treatment.
Simple Summary Doxorubicin (Dox) is a chemotherapeutic agent usually employed for the treatment of breast cancer. However, its use is limited because of the toxicities associated, and hence a proper delivery vehicle is necessary. In this sense, albumin-based nanocarriers are in the limelight for the successful delivery of chemotherapeutics because of safety, biocompatibility, and specific cancer-targeting properties. Herein, we have developed a nanocarrier system based on albumin, which selectively affects the tumor cells, and hence can revolutionize breast cancer therapy. The developed nanoparticles could be further used for the delivery of other hydrophobic drugs like SN38, which broadens the use of this system in the treatment of breast cancer. Albumin-based nanoparticles are an emerging platform for the delivery of various chemotherapeutics because of their biocompatibility, safety, and ease of surface modification for specific targeting. The most widely used method for the preparation of albumin nanoparticles is by desolvation process using glutaraldehyde (GLU) as a cross-linker. However, limitations of GLU like toxicity and interaction with drugs force the need for alternative cross-linkers. In the present study, several cross-linking systems were evaluated for the preparation of Bovine Serum Albumin (BSA) nanoparticles (ABNs) encapsulating Doxorubicin (Dox). Based on the results obtained from morphological characterization, in vitro release, and therapeutic efficacy in cells, N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP)-modified ABNs (ABN-SPDP) was chosen. Since ABN-SPDP are formed with disulfide linkage, the drug release is facilitated under a highly reducing environment present in the tumor sites. The cytotoxicity studies of those ABN-SPDP were performed in three different breast cell lines, highlighting the mechanism of cell death. The Dox-encapsulated ABN-SPDP showed toxicity in both the breast cancer cells (MCF-7 and MDA-MB-231), but, remarkably, a negligible effect was observed in non-tumoral MCF-10A cells. In addition to the hydrophilic Dox, this system could be used as a carrier for hydrophobic drugs like SN38. The system could be employed for the preparation of nanoparticles based on human serum albumin (HSA), which further enhances the feasibility of this system for clinical use. Hence, the albumin nanoparticles developed herein present an excellent potential for delivering various drugs in cancer therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available