4.7 Article

Dependence of global radiative feedbacks on evolving patterns of surface heat fluxes

Journal

GEOPHYSICAL RESEARCH LETTERS
Volume 43, Issue 18, Pages 9877-9885

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2016GL070907

Keywords

-

Ask authors/readers for more resources

In most climate models, after an abrupt increase in radiative forcing the climate feedback parameter magnitude decreases with time. We demonstrate how the evolution of the pattern of ocean heat uptake-moving from a more homogeneous toward a heterogeneous and high-latitude-enhanced pattern-influences not only regional but also global climate feedbacks. We force a slab ocean model with scaled patterns of ocean heat uptake derived from a coupled ocean-atmosphere general circulation model. Steady state results from the slab ocean approximate transient results from the dynamic ocean configuration. Our results indicate that cloud radiative effects play an important role in decreasing the magnitude of the climate feedback parameter. The ocean strongly affects atmospheric temperatures through both heat uptake and through influencing atmospheric feedbacks. This highlights the challenges associated with reliably predicting transient or equilibrated climate system states from shorter-term climate simulations and observed climate variability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available