4.7 Article

Evidence from MESSENGER for sulfur- and carbon-driven explosive volcanism on Mercury

Journal

GEOPHYSICAL RESEARCH LETTERS
Volume 43, Issue 8, Pages 3653-3661

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2016GL068325

Keywords

-

Funding

  1. NASA [NAS5-97271, NASW-00002]

Ask authors/readers for more resources

Targeted MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) X-Ray Spectrometer measurements of Mercury's largest identified pyroclastic deposit are combined with neutron and reflectance spectroscopy data to constrain the composition of volatiles involved in the eruption that emplaced the pyroclastic material. The deposit, northeast of the Rachmaninoff basin, is depleted in S (relative to Ca and Si) and C, compared with the rest of Mercury's surface. Spectral reflectance measurements of the deposit indicate relatively high overall reflectance and an oxygen-metal charge transfer (OMCT) absorption band at ultraviolet wavelengths. These results are consistent with oxidation of graphite and sulfides during magma ascent, via reaction with oxides in the magma or assimilated country rock, and the formation of S-and C-bearing volatile species. Consumption of graphite during oxidation could account for the elevated reflectance of the pyroclastic material, and the strength of the OMCT band is consistent with similar to 0.03-0.1 wt% FeO in the deposit.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available