4.5 Article

Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail

Related references

Note: Only part of the references are listed.
Article Multidisciplinary Sciences

Spike mutation D614G alters SARS-CoV-2 fitness

Jessica A. Plante et al.

Summary: The D614G substitution in the SARS-CoV-2 spike protein enhances viral replication and infectivity in human lung epithelial cells, primary airway tissues, and hamsters. This variant may increase transmission in the upper respiratory tract and doesn't seem to significantly reduce vaccine efficacy. Further research on therapeutic antibodies targeting the circulating G614 virus is recommended.

NATURE (2021)

Article Microbiology

Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition

Allison J. Greaney et al.

Summary: Antibodies targeting the SARS-CoV-2 spike receptor-binding domain (RBD) are key in neutralizing antibody responses, and a deep mutational scanning method was used to assess the impact of all amino-acid mutations in the RBD on antibody binding with 10 human monoclonal antibodies. The study identified the clustered escape mutations in different surfaces of the RBD that correspond to structurally defined antibody epitopes, showing that even antibodies targeting the same surface can have distinct escape mutations.

CELL HOST & MICROBE (2021)

Article Infectious Diseases

Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020

Kathy Leung et al.

Summary: Two new lineages of SARS-CoV-2 with the N501Y mutation in the receptor-binding domain of the spike protein have spread rapidly in the United Kingdom. The 501Y lineage without amino acid deletion Delta 69/Delta 70 was estimated to be 10% more transmissible than the 501N lineage, while the 501Y lineage with amino acid deletion Delta 69/Delta 70 was estimated to be 75% more transmissible than the 501N lineage.

EUROSURVEILLANCE (2021)

Article Multidisciplinary Sciences

Prospective mapping of viral mutations that escape antibodies used to treat COVID-19

Tyler N. Starr et al.

Summary: Research has found that mutations in the receptor binding domain (RBD) of SARS-CoV-2 may potentially escape the action of the REGN-COV2 cocktail, providing important information for interpreting mutations observed during viral surveillance.

SCIENCE (2021)

Article Public, Environmental & Occupational Health

Emergence of SARS-CoV-2 B.1.1.7 Lineage — United States, December 29, 2020–January 12, 2021

Summer E. Galloway et al.

MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT (2021)

Article Biochemistry & Molecular Biology

The antigenic anatomy of SARS-CoV-2 receptor binding domain

Wanwisa Dejnirattisai et al.

Summary: Antibodies play a crucial role in immune protection against SARS-CoV-2, with some being used as therapeutics. A study identified 377 human monoclonal antibodies, focusing on 80 that bind the virus spike, and found that most highly inhibitory antibodies can block the virus-receptor interaction. Novel binding modes of potent inhibitory antibodies were discovered, showing potential for prophylactic or therapeutic use in animal models.
Article Biochemistry & Molecular Biology

Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity

Emma C. Thomson et al.

Summary: SARS-CoV-2 virus can mutate and evade immunity, with mutations like N439K conferring resistance against neutralizing monoclonal antibodies and enhancing binding affinity to hACE2 receptor. Despite similar in vitro replication fitness and clinical outcomes compared to wild type, N439K mutation highlights the importance of ongoing molecular surveillance for guiding vaccine and therapeutic development and usage.
Article Microbiology

Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization

Zhuoming Liu et al.

Summary: The study found that antibodies targeting the SARS-CoV-2 spike protein have escape mutations, different monoclonal antibodies have unique resistance profiles, some mutants are resistant to multiple antibodies while some variants can escape neutralization by convalescent sera. Comparing antibody-mediated mutations with circulating SARS-CoV-2 sequences revealed substitutions that may weaken neutralizing immune responses in some individuals, warranting further investigation.

CELL HOST & MICROBE (2021)

Article Microbiology

Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies

Allison J. Greaney et al.

Summary: The evolution of SARS-CoV-2 may impact the recognition of the virus by human antibody-mediated immunity, with mutations affecting antibody binding varying significantly among individuals and within the same individual over time. Despite this variability, mutations that greatly reduce antibody binding usually occur at specific sites in the RBD, with E484 being the most crucial. These findings can inform surveillance efforts for SARS-CoV-2 evolution in the future.

CELL HOST & MICROBE (2021)

Letter Virology

Genomic Characterization of a Novel SARS-CoV-2 Lineage from Rio de Janeiro, Brazil

Carolina M. Voloch et al.

JOURNAL OF VIROLOGY (2021)

Article Multidisciplinary Sciences

Detection of a SARS-CoV-2 variant of concern in South Africa

Houriiyah Tegally et al.

Summary: The article describes a newly emerged lineage of SARS-CoV-2, 501Y.V2, characterized by eight mutations in the spike protein, which may result in increased transmissibility or immune escape. This lineage originated in South Africa and quickly became dominant in Eastern Cape, Western Cape, and KwaZuluNatal provinces within weeks.

NATURE (2021)

Article Multidisciplinary Sciences

Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7

Pengfei Wang et al.

Summary: The COVID-19 pandemic has had global repercussions, with promising vaccines and monoclonal antibody therapies. However, newly detected variants of SARS-CoV-2 present challenges to these treatment options.

NATURE (2021)

Article Multidisciplinary Sciences

mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants

Zijun Wang et al.

Summary: Volunteers who received the Moderna or Pfizer-BioNTech vaccine showed high levels of antibodies and memory B cell responses against SARS-CoV-2, with activity similar to individuals who had recovered from natural infection. However, their efficacy against specific SARS-CoV-2 variants was reduced, indicating a potential need for periodic updates to mRNA vaccines to maintain clinical efficacy.

NATURE (2021)

Article Biochemistry & Molecular Biology

Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies

Rita E. Chen et al.

Summary: The study analyzed antibody neutralization activity against a panel of authentic isolates and chimeric SARS-CoV-2 variants, showing significantly reduced neutralizing activity against the B.1.351 variant first identified in South Africa. Antibodies targeting the receptor-binding domain and N-terminal domain, monoclonal antibodies, convalescent sera, and mRNA vaccine-induced immune sera exhibited decreased inhibitory activity against viruses with an E484K spike mutation, suggesting a need for updated monoclonal antibodies or vaccine adjustments to prevent loss of protection against emerging variants.

NATURE MEDICINE (2021)

Article Biochemistry & Molecular Biology

SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma

Constantinos Kurt Wibmer et al.

Summary: The SARS-CoV-2 virus in the B.1.351 variant discovered in South Africa can evade neutralization by most antibodies when expressed, but does not affect binding by convalescent plasma. This suggests the potential for reinfection with antigenically distinct variants and predicts reduced efficacy of spike-based vaccines.

NATURE MEDICINE (2021)

Article Biochemistry & Molecular Biology

Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant

Xianding Deng et al.

Summary: A new SARS-CoV-2 variant named B.1.427/B.1.429 was identified in California, with increased transmissibility and carrying three mutations in spike protein, including L452R substitution. The variant emerged in May 2020 and became predominant in sequenced cases from September 2020 to January 2021. In vivo viral shedding was increased and antibody neutralization decreased, calling for further investigation.
Article Microbiology

Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization

Pengfei Wang et al.

Summary: The emerging Brazilian variant P.1 shows increased resistance to antibody neutralization, posing a threat to current antibody therapies, but has less impact on the effectiveness of protective vaccines.

CELL HOST & MICROBE (2021)

Article Multidisciplinary Sciences

Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma

Sandile Cele et al.

Summary: The study compared the neutralization of non-VOC and 501Y.V2 VOC variants using plasma from COVID-19 patients in South Africa. It found that plasma from individuals infected during the first wave effectively neutralized the first-wave virus variant, while plasma from those infected in the second wave effectively neutralized the 501Y.V2 variant.

NATURE (2021)

Article Multidisciplinary Sciences

Host barriers to SARS-CoV-2 demonstrated by ferrets in a high-exposure domestic setting

Kaitlin Sawatzki et al.

Summary: Ferrets are relevant for laboratory studies on respiratory viruses, but no evidence of natural transmission of SARS-CoV-2 from infected humans to ferrets was observed in the study. Unique mutations in ferrets may contribute to their susceptibility to SARS-CoV-2. Therefore, domestic ferrets are considered to be at low risk of natural infection from currently circulating SARS-CoV-2.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2021)

Article Multidisciplinary Sciences

BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants

Jianying Liu et al.

Summary: Serum samples from individuals vaccinated with the BNT162b2 vaccine can neutralize various SARS-CoV-2 variants, indicating mass immunization as a central strategy to end the global COVID-19 pandemic.

NATURE (2021)

Article Multidisciplinary Sciences

SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma

Emanuele Andreano et al.

Summary: Research suggests that SARS-CoV-2 has the potential to generate variants resistant to neutralizing antibodies, and computational modeling predicts that these variants may prevent binding of neutralizing antibodies. Therefore, the development of vaccines and antibodies capable of controlling emerging variants is crucial.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2021)

Article Multidisciplinary Sciences

Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies

Allison J. Greaney et al.

Summary: The study found that although the human immune system can produce antibodies that target diverse RBD epitopes, in practice, the polyclonal response to infection tends to be skewed towards a single class of antibodies targeting an epitope that is already undergoing rapid evolution.

NATURE COMMUNICATIONS (2021)

Article Multidisciplinary Sciences

A pneumonia outbreak associated with a new coronavirus of probable bat origin

Peng Zhou et al.

NATURE (2020)

Article Multidisciplinary Sciences

Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation

Daniel Wrapp et al.

SCIENCE (2020)

Article Microbiology

An Infectious cDNA Clone of SARS-CoV-2

Xuping Xie et al.

CELL HOST & MICROBE (2020)

Article Multidisciplinary Sciences

A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2

Rui Shi et al.

NATURE (2020)

Article Multidisciplinary Sciences

Human neutralizing antibodies elicited by SARS-CoV-2 infection

Bin Ju et al.

NATURE (2020)

Article Biochemistry & Molecular Biology

Antibody responses to SARS-CoV-2 in patients with COVID-19

Quan-Xin Long et al.

NATURE MEDICINE (2020)

Article Biochemistry & Molecular Biology

The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity

Qianqian Li et al.

Article Microbiology

Human B Cell Clonal Expansion and Convergent Antibody Responses to SARS-CoV-2

Sandra C. A. Nielsen et al.

CELL HOST & MICROBE (2020)

Article Multidisciplinary Sciences

Convergent antibody responses to SARS-CoV-2 in convalescent individuals

Davide F. Robbiani et al.

NATURE (2020)

Article Multidisciplinary Sciences

Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike

Lihong Liu et al.

NATURE (2020)

Article Multidisciplinary Sciences

Potently neutralizing and protective human antibodies against SARS-CoV-2

Seth J. Zost et al.

NATURE (2020)

Article Biochemistry & Molecular Biology

SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects

Antoni G. Wrobel et al.

NATURE STRUCTURAL & MOLECULAR BIOLOGY (2020)

Article Multidisciplinary Sciences

Structure-based design of prefusion-stabilized SARS-CoV-2 spikes

Ching-Lin Hsieh et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail

Johanna Hansen et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability

Philip J. M. Brouwer et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

Structural basis of a shared antibody response to SARS-CoV-2

Meng Yuan et al.

SCIENCE (2020)

Article Biotechnology & Applied Microbiology

SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected hospitalized COVID-19 patients

William B. Klimstra et al.

JOURNAL OF GENERAL VIROLOGY (2020)

Article Multidisciplinary Sciences

Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion

Donald J. Benton et al.

NATURE (2020)

Article Multidisciplinary Sciences

Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms

M. Alejandra Tortorici et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

High frequency of shared clonotypes in human B cell receptor repertoires

Cinque Soto et al.

NATURE (2019)

Article Multidisciplinary Sciences

Inferring the shape of global epistasis

Jakub Otwinowski et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2018)

Article Multidisciplinary Sciences

Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion

Alexandra C. Walls et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2017)

Article Medicine, Research & Experimental

Broadly neutralizing antibodies with few somatic mutations and hepatitis C virus clearance

Justin R. Bailey et al.

JCI INSIGHT (2017)

Article Biochemistry & Molecular Biology

Vaccine-Induced Antibodies that Neutralize Group 1 and Group 2 Influenza A Viruses

M. Gordon Joyce et al.

Review Immunology

Reverse vaccinology 2.0: Human immunology instructs vaccine antigen design

Rino Rappuoli et al.

JOURNAL OF EXPERIMENTAL MEDICINE (2016)

Article Multidisciplinary Sciences

Diversion of HIV-1 vaccine-induced immunity by gp41-microbiota cross-reactive antibodies

Wilton B. Williams et al.

SCIENCE (2015)

Article Multidisciplinary Sciences

Rapid development of broadly influenza neutralizing antibodies through redundant mutations

Leontios Pappas et al.

NATURE (2014)

Article Multidisciplinary Sciences

Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus

Erick Giang et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2012)

Article Biochemical Research Methods

Overview of the CCP4 suite and current developments

Martyn D. Winn et al.

ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY (2011)

Article Biochemistry & Molecular Biology

Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega

Fabian Sievers et al.

MOLECULAR SYSTEMS BIOLOGY (2011)

Article Biochemical Research Methods

XDS

Wolfgang Kabsch

ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY (2010)

Article Biochemical Research Methods

PHENIX: a comprehensive Python-based system for macromolecular structure solution

Paul D. Adams et al.

ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY (2010)

Article Biochemistry & Molecular Biology

Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses

Jianhua Sui et al.

NATURE STRUCTURAL & MOLECULAR BIOLOGY (2009)

Article Chemistry, Multidisciplinary

Phaser crystallographic software

Airlie J. McCoy et al.

JOURNAL OF APPLIED CRYSTALLOGRAPHY (2007)

Article Biochemistry & Molecular Biology

GlyProt:: in silico glycosylation of proteins

A Bohne-Lang et al.

NUCLEIC ACIDS RESEARCH (2005)

Article Multidisciplinary Sciences

Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120

CC Huang et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2004)

Article Biochemical Research Methods

MUSCLE: a multiple sequence alignment method with reduced time and space complexity

RC Edgar

BMC BIOINFORMATICS (2004)

Article Biochemical Research Methods

Coot:: model-building tools for molecular graphics

P Emsley et al.

ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY (2004)

Article Biochemistry & Molecular Biology

WebLogo: A sequence logo generator

GE Crooks et al.

GENOME RESEARCH (2004)