4.6 Article

Dye-Loaded Polymersome-Based Lateral Flow Assay: Rational Design of a COVID-19 Testing Platform by Repurposing SARS-CoV-2 Antibody Cocktail and Antigens Obtained from Positive Human Samples

Journal

ACS SENSORS
Volume 6, Issue 8, Pages 2988-2997

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acssensors.1c00854

Keywords

COVID-19; in vitro diagnostics; point-of-care (POC) platform; lateral flow assay; dye-loaded polymersome; sample repurposing

Funding

  1. EGE University, Research Foundation [TOA2020-21862]
  2. Republic of Turkey, Ministry of Development [2010K120810/2020K12150700, 2016K121190]

Ask authors/readers for more resources

The study presents a rational design of a colorimetric lateral flow immunoassay (LFA) based on repurposing human samples to produce COVID-19-specific antigens and antibodies for naked-eye detection. The diagnostic tests showed 93% sensitivity for antigen tests and 92.2% sensitivity for antibody tests, indicating high potential for widespread applications.
The global pandemic of COVID-19 continues to be an important threat, especially with the fast transmission rate observed after the discovery of novel mutations. In this perspective, prompt diagnosis requires massive economical and human resources to mitigate the disease. The current study proposes a rational design of a colorimetric lateral flow immunoassay (LFA) based on the repurposing of human samples to produce COVID-19-specific antigens and antibodies in combination with a novel dye-loaded polymersome for naked-eye detection. A group of 121 human samples (61 serums and 60 nasal swabs) were obtained and analyzed by RT-PCR and ELISA. Pooled samples were used to purify antibodies using affinity chromatography, while antigens were purified via magnetic nanoparticles-based affinity. The purified proteins were confirmed for their specificity to COVID-19 via commercial LFA, ELISA, and electrochemical tests in addition to sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Polymersomes were prepared using methoxy polyethylene glycol-b-polycaprolactone (mPEG-b-PCL) diblock copolymers and loaded with a Coomassie Blue dye. The polymersomes were then functionalized with the purified antibodies and applied for the preparation of two types of LFA (antigen test and antibody test). Overall, the proposed diagnostic tests demonstrated 93 and 92.2% sensitivity for antigen and antibody tests, respectively. The repeatability (92-94%) and reproducibility (96-98%) of the tests highlight the potential of the proposed LFA. The LFA test was also analyzed for stability, and after 4 weeks, 91-97% correct diagnosis was observed. The current LFA platform is a valuable assay that has great economical and analytical potential for widespread applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available