4.6 Article

Wood Carbon Based Single-Atom Catalyst for Rechargeable Zn-Air Batteries

Related references

Note: Only part of the references are listed.
Review Chemistry, Multidisciplinary

Carbon-based single atom catalyst: Synthesis, characterization, DFT calculations

Yanan Shang et al.

Summary: This review discusses the preparation strategies of carbon-based single-atom catalysts (SACs), summarizes the recent advancements in characterization techniques and computational achievements for understanding the electronic and geometric characteristics of carbon-based SACs, and discusses the challenges and future directions in single-atom site identification and advanced tool development.

CHINESE CHEMICAL LETTERS (2022)

Article Engineering, Environmental

Rational design of iron single atom anchored on nitrogen doped carbon as a high-performance electrocatalyst for all-solid-state flexible zinc-air batteries

Tian Chen et al.

Summary: Developing a cheap and efficient Fe-N-C catalyst without the need for acid etching is essential for high-performance metal-air and full cell batteries. The Fe-N-C catalyst obtained through a two-step polymerization-pyrolysis process demonstrates excellent ORR performance, providing a promising option for next-generation flexible energy storage devices.

CHEMICAL ENGINEERING JOURNAL (2021)

Article Chemistry, Physical

3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery

Junxing Han et al.

Summary: The novel single-atom electrocatalyst Fe-N-C/N-OMC exhibits high ORR activity, attributed to the unique structure of Fe-N-C sites and the advantages of the 3D mesoporous carbon structure.

APPLIED CATALYSIS B-ENVIRONMENTAL (2021)

Article Chemistry, Physical

Highly active sites of low spin FeIIN4 species: The identification and the ORR performance

Huizhu Cai et al.

Summary: This study synthesized Fe3C/C and Fe2N/C samples, and identified single sites of FeN4 species in the Fe2N/C sample after acid leaching, serving as an ideal model for identification of catalytic functions of single sites of FeN4 in ORR. A correlation was found between the concentration of low spin (FeN4)-N-II species by Mossbauer spectra and the kinetic current density at 0.8 V in alkaline media, confirming the catalytic roles of low spin (FeN4)-N-II species as highly active sites for ORR.

NANO RESEARCH (2021)

Article Nanoscience & Nanotechnology

Interface Engineering of CoS/CoO@N-Doped Graphene Nanocomposite for High-Performance Rechargeable Zn-Air Batteries

Yuhui Tian et al.

Summary: The interface engineering of heterogeneous CoS/CoO nanocrystals and N-doped graphene composite results in enhanced electrocatalytic performances for oxygen reduction reaction and oxygen evolution reaction. Optimizing the composition, interface structure, and conductivity of the electrocatalyst leads to bifunctional catalytic activity with outstanding efficiency and stability for both ORR and OER. The aqueous ZAB with the bifunctional electrocatalyst displays high power density, specific capacity, and cycling stability, making it promising for flexible and wearable electronic devices.

NANO-MICRO LETTERS (2021)

Article Chemistry, Multidisciplinary

Atomic-Level Modulation of Electronic Density at Cobalt Single-Atom Sites Derived from Metal-Organic Frameworks: Enhanced Oxygen Reduction Performance

Yuanjun Chen et al.

Summary: This study demonstrates the correlation between atomic configuration induced electronic density of single-atom Co active sites and oxygen reduction reaction (ORR) performance. The designed and synthesized Co-1-N3PS/HC catalyst shows outstanding ORR activity in alkaline and acidic media, surpassing Pt/C and most non-precious ORR electrocatalysts. Insights from this work promote rational design of efficient catalysts.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Atomically Dispersed Fe-Heteroatom (N, S) Bridge Sites Anchored on Carbon Nanosheets for Promoting Oxygen Reduction Reaction

Mengran Wang et al.

Summary: This study developed a method to fabricate single Fe atom catalysts with good oxygen reduction activity. The FeN3S atomic sites induced charge redistribution, lowering the binding strength of oxygenated reaction intermediates and leading to improved reaction kinetics.

ACS ENERGY LETTERS (2021)

Article Chemistry, Physical

Identification of durable and non-durable FeNx sites in Fe-N-C materials for proton exchange membrane fuel cells

Jingkun Li et al.

Summary: Fe-N-C materials show promise as an alternative to platinum in acidic polymer fuel cells, but limited understanding of their operando degradation hinders rational approaches to improved durability. Two distinct FeNx sites in the catalysts degrade differently during the oxygen reduction reaction, with one site substantially contributing after 50 hours of operation.

NATURE CATALYSIS (2021)

Article Chemistry, Multidisciplinary

Engineering Crystallinity and Oxygen Vacancies of Co(II) Oxide Nanosheets for High Performance and Robust Rechargeable Zn-Air Batteries

Yuhui Tian et al.

Summary: This study combines comprehensive characterizations and density functional theory calculations to investigate the roles of crystallinity and oxygen vacancy levels in Co(II) oxide on ORR and OER activities. The conversion of Co(OH)(2) into oxygen-defective amorphous-crystalline CoO nanosheets with controlled crystallinity and oxygen vacancy levels leads to significantly enhanced electrocatalytic activities. The introduction of amorphous structures and oxygen vacancies in the ODAC-CoO material proves to be an effective strategy for achieving high-performance electrocatalytic ORR and OER processes.

ADVANCED FUNCTIONAL MATERIALS (2021)

Review Chemistry, Multidisciplinary

Engineering local coordination environments and site densities for high-performance Fe-N-C oxygen reduction reaction electrocatalysis

Qing Wang et al.

Summary: This review summarizes recent advances in the design and synthesis of Fe-N-C catalysts rich in highly dispersed FeNx active sites and emphasizes strategies for tuning the electronic structure of Fe atoms to enhance the ORR activity. Despite progress made in the past 5 years, significant technical obstacles still hinder the large-scale application of Fe-N-C materials as cathode catalysts in real-world fuel cells.

SMARTMAT (2021)

Review Chemistry, Multidisciplinary

A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts

Iann C. Gerber et al.

CHEMICAL REVIEWS (2020)

Review Chemistry, Physical

The Current State of Aqueous Zn-Based Rechargeable Batteries

Ya-Ping Deng et al.

ACS ENERGY LETTERS (2020)

Correction Chemistry, Multidisciplinary

Design Principle of Fe-N-C Electrocatalysts: How to Optimize Multimodal Porous Structures? (vol 141, pg 2035, 2019)

Soo Hong Lee et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Multidisciplinary Sciences

Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO

Jun Gu et al.

SCIENCE (2019)

Article Chemistry, Physical

Atomically Dispersed Metal Catalysts for Oxygen Reduction

Mengjie Chen et al.

ACS ENERGY LETTERS (2019)

Article Multidisciplinary Sciences

A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts

Hongzhou Yang et al.

NATURE COMMUNICATIONS (2019)

Article Chemistry, Physical

Recent Insights into the Oxygen-Reduction Electrocatalysis of Fe/N/C Materials

Wang Wang et al.

ACS CATALYSIS (2019)

Article Chemistry, Multidisciplinary

Single-Atom Fe-Nx-C as an Efficient Electrocatalyst for Zinc-Air Batteries

Junxing Han et al.

ADVANCED FUNCTIONAL MATERIALS (2019)

Article Chemistry, Multidisciplinary

Hierarchically Porous Carbon Plates Derived from Wood as Bifunctional ORR/OER Electrodes

Xinwen Peng et al.

ADVANCED MATERIALS (2019)

Review Chemistry, Physical

Transforming Energy with Single-Atom Catalysts

Shipeng Ding et al.

JOULE (2019)

Article Chemistry, Physical

Hierarchically Porous, Ultrathick, Breathable Wood-Derived Cathode for Lithium-Oxygen Batteries

Huiyu Song et al.

ADVANCED ENERGY MATERIALS (2018)

Article Chemistry, Physical

Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery

Liu Yang et al.

NANO ENERGY (2018)

Article Chemistry, Physical

Single-Atom Catalysts for Electrochemical Water Splitting

Chengzhou Zhu et al.

ACS ENERGY LETTERS (2018)

Article Chemistry, Multidisciplinary

InSitu Thermal Atomization To Convert Supported Nickel Nanoparticles into Surface-Bound Nickel Single-Atom Catalysts

Jian Yang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Article Multidisciplinary Sciences

A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts

Youqi Zhu et al.

NATURE COMMUNICATIONS (2018)

Review Chemistry, Multidisciplinary

Advanced Biomass-Derived Electrocatalysts for the Oxygen Reduction Reaction

Maryam Borghei et al.

ADVANCED MATERIALS (2018)

Review Chemistry, Multidisciplinary

Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications

Hongli Zhu et al.

CHEMICAL REVIEWS (2016)

Article Electrochemistry

Porous wood carbon monolith for high-performance supercapacitors

Mao-Cheng Liu et al.

ELECTROCHIMICA ACTA (2012)

Article Multidisciplinary Sciences

Isolated Metal Atom Geometries as a Strategy for Selective Heterogeneous Hydrogenations

Georgios Kyriakou et al.

SCIENCE (2012)

Article Chemistry, Multidisciplinary

Single-atom catalysis of CO oxidation using Pt1/FeOx

Botao Qiao et al.

NATURE CHEMISTRY (2011)