4.6 Article

Effect of Side-Group-Regulated Dipolar Passivating Molecules on CsPbBr3 Perovskite Solar Cells

Related references

Note: Only part of the references are listed.
Article Chemistry, Multidisciplinary

Intramolecular Electric Field Construction in Metal Phthalocyanine as Dopant-Free Hole Transporting Material for Stable Perovskite Solar Cells with >21 % Efficiency

Zefeng Yu et al.

Summary: Ni phthalocyanine (NiPc)with methoxyethoxy units as HTMs showed improved conductivity and hole mobility in PSCs, achieving a record efficiency of 21.23%. The extracted holes in NiPc are mainly concentrated on the phthalocyanine core and transferred between molecules, demonstrating good stability in moisture, heating, and light.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Review Chemistry, Physical

Wide-Bandgap Metal Halide Perovskites for Tandem Solar Cells

Jinhui Tong et al.

Summary: Metal halide perovskite solar cells have emerged as the most promising new-generation solar cell technology, especially for wide-bandgap solar cells. Research progress on developing wide-bandgap PSCs and utilizing them in tandem configurations has been highlighted, emphasizing on efficiency improvement and stability challenges.

ACS ENERGY LETTERS (2021)

Article Chemistry, Physical

Direct Observation on p- to n-Type Transformation of Perovskite Surface Region during Defect Passivation Driving High Photovoltaic Efficiency

Shaobing Xiong et al.

Summary: The use of natural additive capsaicin in perovskite solar cells leads to defect passivation and transformation of surface energetics, resulting in improved charge transport, efficiency, and stability. This approach shows potential for significant enhancement of PSC performance.

JOULE (2021)

Article Chemistry, Multidisciplinary

Modifying Surface Termination of CsPbI3 Grain Boundaries by 2D Perovskite Layer for Efficient and Stable Photovoltaics

Tiantian Liu et al.

Summary: In order to improve the performance of all-inorganic perovskite solar cells, an ultra-thin 2D perovskite is used to terminate CsPbI3 grain boundaries, enhancing charge-carrier extraction and transport while effectively suppressing nonradiative recombination.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Tautomeric Molecule Acts as a Sunscreen for Metal Halide Perovskite Solar Cells

Yang Wang et al.

Summary: Applying a sunscreen molecule onto perovskite solar cells enhances their UV endurance and passivates defects by molecular tautomerism, significantly improving device efficiency. The sunscreen strategy enables long-term UV stability for perovskite solar cells.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

p-Type Charge Transfer Doping of Graphene Oxide with (NiCo)1-yFeyOx for Air-Stable, All-Inorganic CsPbIBr2 Perovskite Solar Cells

Jian Du et al.

Summary: By utilizing (NiCo)(1-y)FeyOx nanoparticle decorated graphene oxide (GO), the efficiency of all-inorganic CsPbIBr2 PSC was significantly improved, resolving the contradiction between charge extraction and localization. The top device exhibited excellent long-term stability under 10% relative humidity without encapsulation for over 70 days.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Multidisciplinary Sciences

Efficient perovskite solar cells via improved carrier management

Jason J. Yoo et al.

Summary: Metal halide perovskite solar cells have shown great potential to disrupt the silicon solar cell market with their improved performance, yet still face limitations in light-harvesting due to charge carrier recombination. Efforts to enhance charge carrier management offer a path to increase device performance and approach the theoretical efficiency limit of PSCs.

NATURE (2021)

Article Multidisciplinary Sciences

Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations

Jingjing Xue et al.

Summary: The electronic properties of metal-halide perovskites are mainly influenced by the structural and compositional variations in the inorganic B-X framework, while A-site cations primarily stabilize the lattice. The incorporation of pi-conjugated pyrene-containing A-site cations has been shown to extend electronic states, influencing surface band edges and improving carrier dynamics and power conversion efficiencies in perovskites.

SCIENCE (2021)

Review Chemistry, Physical

Recent progress of minimal voltage losses for high-performance perovskite photovoltaics

Chengxi Zhang et al.

Summary: Perovskite solar cells (PSCs) have rapidly advanced in technology, but efforts are still needed to reduce voltage loss and achieve higher open-circuit voltage. A comprehensive overview of the lowest voltage loss values and strategies for suppression is lacking.

NANO ENERGY (2021)

Article Multidisciplinary Sciences

Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells

Jaeki Jeong et al.

Summary: The research introduces a new concept of using formate anion to suppress defects in metal halide perovskite films and enhance film crystallinity, leading to improved efficiency and stability of solar cells.

NATURE (2021)

Article Chemistry, Physical

Acid Dissociation Constant: A Criterion for Selecting Passivation Agents in Perovskite Solar Cells

Sun-Ho Lee et al.

Summary: The acid dissociation constant of passivation agents plays a key role in the photovoltaic performance of perovskite solar cells. Passivation with high-pK(a) CYCl can enhance PCE, while low-pK(a) ANCl leads to more traps and decreased efficiency.

ACS ENERGY LETTERS (2021)

Article Chemistry, Multidisciplinary

Tuning halide perovskite energy levels

Laura Canil et al.

Summary: Controlling the energy levels in semiconductors is crucial for optoelectronic applications. This study successfully tuned the work function of halide perovskite semiconductors using self-assembled monolayers of small molecules, demonstrating a versatile approach to adjust energy level alignment at the interface for perovskite-based optoelectronics.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Chemistry, Multidisciplinary

Revealing defective nanostructured surfaces and their impact on the intrinsic stability of hybrid perovskites

Yuze Lin et al.

Summary: By mechanically polishing to remove the defective surface layers in polycrystalline films, the stability of perovskite films is significantly enhanced, allowing them to maintain high efficiency under continuous illumination and high temperature conditions.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Chemistry, Multidisciplinary

Interface Dipole Induced Field-Effect Passivation for Achieving 21.7% Efficiency and Stable Perovskite Solar Cells

Fengyou Wang et al.

Summary: The novel field-effect passivation technique has successfully improved the power conversion efficiency of organolead halide hybrid perovskite solar cells and enhanced their humidity stability.

ADVANCED FUNCTIONAL MATERIALS (2021)

Review Chemistry, Multidisciplinary

Reducing Detrimental Defects for High-Performance Metal Halide Perovskite Solar Cells

Luis K. Ono et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Multidisciplinary

Synergistic Reinforcement of Built-In Electric Fields for Highly Efficient and Stable Perovskite Photovoltaics

Wei-Ting Wang et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Chemistry, Multidisciplinary

Alkyl-Chain-Regulated Charge Transfer in Fluorescent Inorganic CsPbBr3 Perovskite Solar Cells

Jialong Duan et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Multidisciplinary

Passivation Mechanism Exploiting Surface Dipoles Affords High-Performance Perovskite Solar Cells

Fatemeh Ansari et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Chemistry, Multidisciplinary

Interfacial Strain Release from the WS2/CsPbBr3van der Waals Heterostructure for 1.7 V Voltage All-Inorganic Perovskite Solar Cells

Qingwei Zhou et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Review Chemistry, Inorganic & Nuclear

Coordination modulated crystallization and defect passivation in high quality perovskite film for efficient solar cells

Xiaoyu Deng et al.

COORDINATION CHEMISTRY REVIEWS (2020)

Review Chemistry, Multidisciplinary

Interfacial Dipole in Organic and Perovskite Solar Cells

Qi Chen et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Nanoscience & Nanotechnology

Luminescent, Wide-Band Gap Solar Cells with a Photovoltage up to 1.75 V through a Heterostructured Light-Absorbing Layer

Dingjian Zhou et al.

ACS APPLIED MATERIALS & INTERFACES (2020)

Article Multidisciplinary Sciences

Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss

Mingyu Jeong et al.

SCIENCE (2020)

Review Chemistry, Multidisciplinary

All-Inorganic CsPbX3 Perovskite Solar Cells: Progress and Prospects

Jingru Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Multidisciplinary Sciences

Stabilizing heterostructures of soft perovskite semiconductors

Yanbo Wang et al.

SCIENCE (2019)

Review Chemistry, Physical

Untapped Potentials of Inorganic Metal Halide Perovskite Solar Cells

Anita Ho-Baillie et al.

JOULE (2019)

Article Chemistry, Multidisciplinary

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

Akihiro Kojima et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2009)