4.6 Article

Work Function Adjustment of Nb2CTx Nanoflakes as Hole and Electron Transport Layers in Organic Solar Cells by Controlling Surface Functional Groups

Related references

Note: Only part of the references are listed.
Article Engineering, Environmental

ZnO/Ti3C2Tx monolayer electron transport layers with enhanced conductivity for highly efficient inverted polymer solar cells

Chunli Hou et al.

Summary: MXenes, a novel family of two-dimensional transition metal carbides and nitrides, demonstrate a wide spectrum of applications due to their unique optical and electronic properties. The addition of Ti3C2Tx nanosheets into zinc oxide (ZnO) to fabricate novel ZnO/Ti3C2Tx nanohybrid composite film results in excellent photoelectric characteristics. The enhanced power conversion efficiency and stability of photovoltaic devices based on ZnO/Ti3C2Tx composite electron transport layers (ETLs) are mainly attributed to the improved charges transfer and collection in inverted polymer solar cells (IPSCs).

CHEMICAL ENGINEERING JOURNAL (2021)

Article Chemistry, Physical

Transition metal carbides (MXenes) for efficient NiO-based inverted perovskite solar cells

D. Saranin et al.

Summary: This work demonstrates the beneficial role of MXene doping in NiO-based inverted perovskite solar cells, improving charge extraction and collection efficiency to achieve superior performance. The ability to finely tune MXene work function during chemical synthesis and modify optoelectronic properties of PSC layers as dopant opens up countless possibilities for engineering inverted PSC structures.

NANO ENERGY (2021)

Article Chemistry, Physical

Reduced energy loss enabled by thiophene-based interlayers for high performance and stable perovskite solar cells

Jiankai Zhang et al.

Summary: This study introduced three thiophene-based interlayers for perovskite solar cells (PVSCs) to reduce energy loss and improve performance. The interlayers optimized the electronic states of the SnO2 electron transport layer and MAPbI(3) film quality, enhancing conductivity and electron transportation efficiency. The interlayers also passivated defect states, promoted high quality film formation, and resulted in PVSCs with higher power conversion efficiency and stability.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Chemistry, Physical

Highly Efficient Nb2C MXene Cathode Catalyst with Uniform O-Terminated Surface for Lithium-Oxygen Batteries

Gaoyang Li et al.

Summary: The study demonstrates the catalytic capability of Nb2C MXene as a cathode material for LOBs, highlighting its superior electrocatalytic performance and high-rate cycle stability.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Multidisciplinary

Nonlinear Work Function Tuning of Lead-Halide Perovskites by MXenes with Mixed Terminations

Alessia Di Vito et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Chemistry, Multidisciplinary

A 2D Titanium Carbide MXene Flexible Electrode for High-Efficiency Light-Emitting Diodes

Soyeong Ahn et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Physical

High-Mass-Loading Porous Ti3C2Tx Films for Ultrahigh-Rate Pseudocapacitors

Jing Kong et al.

ACS ENERGY LETTERS (2020)

Review Chemistry, Multidisciplinary

Interfacial Dipole in Organic and Perovskite Solar Cells

Qi Chen et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Review Chemistry, Multidisciplinary

MXene hydrogels: fundamentals and applications

Yi-Zhou Zhang et al.

CHEMICAL SOCIETY REVIEWS (2020)

Article Chemistry, Physical

Surface Termination Dependent Work Function and Electronic Properties of Ti3C2Tx MXene

Thorsten Schultz et al.

CHEMISTRY OF MATERIALS (2019)

Article Chemistry, Multidisciplinary

17% Efficient Organic Solar Cells Based on Liquid Exfoliated WS2 as a Replacement for PEDOT:PSS

Yuanbao Lin et al.

ADVANCED MATERIALS (2019)

Article Chemistry, Multidisciplinary

MXene-Derived Ferroelectric Crystals

Shaobo Tu et al.

ADVANCED MATERIALS (2019)

Article Materials Science, Multidisciplinary

Solution-processable Ti3C2Tx nanosheets as an efficient hole transport layer for high-performance and stable polymer solar cells

Chunli Hou et al.

JOURNAL OF MATERIALS CHEMISTRY C (2019)

Article Chemistry, Multidisciplinary

Oxide Thin-Film Electronics using All-MXene Electrical Contacts

Zhenwei Wang et al.

ADVANCED MATERIALS (2018)

Review Chemistry, Multidisciplinary

The organic-2D transition metal dichalcogenide heterointerface

Yu Li Huang et al.

CHEMICAL SOCIETY REVIEWS (2018)

Review Chemistry, Multidisciplinary

Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications

Kai Huang et al.

CHEMICAL SOCIETY REVIEWS (2018)

Review Nanoscience & Nanotechnology

2D metal carbides and nitrides (MXenes) for energy storage

Babak Anasori et al.

NATURE REVIEWS MATERIALS (2017)

Article Chemistry, Multidisciplinary

Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide

Andrew D. Dillon et al.

ADVANCED FUNCTIONAL MATERIALS (2016)

Article Chemistry, Multidisciplinary

Triple Dipole Effect from Self-Assembled Small-Molecules for High Performance Organic Photovoltaics

Liqiang Huang et al.

ADVANCED MATERIALS (2016)

Article Chemistry, Multidisciplinary

Schottky-Barrier-Free Contacts with Two-Dimensional Semiconductors by Surface-Engineered MXenes

Yuanyue Liu et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2016)

Article Multidisciplinary Sciences

Electromagnetic interference shielding with 2D transition metal carbides (MXenes)

Faisal Shahzad et al.

SCIENCE (2016)

Article Chemistry, Multidisciplinary

25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials

Michael Naguib et al.

ADVANCED MATERIALS (2014)

Article Chemistry, Multidisciplinary

Unique Lead Adsorption Behavior of Activated Hydroxyl Group in Two-Dimensional Titanium Carbide

Qiuming Peng et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2014)

Article Chemistry, Multidisciplinary

Role of Surface Structure on Li-Ion Energy Storage Capacity of Two-Dimensional Transition-Metal Carbides

Yu Xie et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2014)

Article Multidisciplinary Sciences

Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance

Michael Ghidiu et al.

NATURE (2014)

Article Chemistry, Multidisciplinary

New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries

Michael Naguib et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2013)

Article Multidisciplinary Sciences

A Universal Method to Produce Low-Work Function Electrodes for Organic Electronics

Yinhua Zhou et al.

SCIENCE (2012)

Article Chemistry, Multidisciplinary

Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2

Michael Naguib et al.

ADVANCED MATERIALS (2011)