4.6 Article

Intermolecular hydrogen bond ruptured by graphite with different lamellar number

Journal

ROYAL SOCIETY OPEN SCIENCE
Volume 8, Issue 9, Pages -

Publisher

ROYAL SOC
DOI: 10.1098/rsos.210565

Keywords

ruptured; intermolecular hydrogen bond; glycerol; viscosity; graphite; graphene

Funding

  1. National Natural Science Foundation of China [51675297, 51527901]
  2. China Postdoctoral Science Foundation [2019M650656]
  3. Tianjin Natural Science Foundation [19JCQNJC04300]

Ask authors/readers for more resources

Adding graphite or graphene can adjust intermolecular hydrogen bonds and improve the rheology of glycerol. The main mechanism is believed to be the spatial limiting action of graphite or graphene on the hydrogen bond network structure.
Intermolecular hydrogen bonds are formed through the electrostatic attraction between the hydrogen nucleus on a strong polar bond and high electronegative atom with an unshared pair of electrons and a partial negative charge. It affects the physical and chemical properties of substances. Based on this, we presented a physical method to modulate intermolecular hydrogen bonds for not changing the physical-chemical properties of materials. The graphite and graphene are added into the glycerol, respectively, by being used as a viscosity reducer in this paper. The samples are characterized by Raman and 1H-nuclear magnetic resonance. Results show that intermolecular hydrogen bonds are adjusted by graphite or graphene. The rheology of glycerol is reduced to varying degrees. Transmission electron microscopes and computer simulation show that the spatial limiting action of graphite or graphene is the main cause of breaking the intermolecular hydrogen bond network structure. We hope this work reveals the potential interplay between nanomaterials and hydroxyl liquids, which will contribute to the field of solid-liquid coupling lubrication.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available