4.7 Article

The Arabidopsis pattern recognition receptor EFR enhances fire blight resistance in apple

Journal

HORTICULTURE RESEARCH
Volume 8, Issue 1, Pages -

Publisher

NANJING AGRICULTURAL UNIV
DOI: 10.1038/s41438-021-00639-3

Keywords

-

Funding

  1. Autonomous Province of Trento - Gatsby Charitable Foundation
  2. 2Blades Foundation

Ask authors/readers for more resources

Fire blight disease caused by Erwinia amylovora is a major issue in cultivated apples worldwide. Interspecies transfer of PRRs is a promising strategy to improve broad-spectrum and durable disease resistance in crops. Ectopic expression of EFR in apple rootstock M.26 can activate PAMP-triggered immune response, leading to reduced tissue necrosis associated with E. amylovora infection.
Fire blight disease, caused by the bacterium Erwinia amylovora (E. amylovora), is responsible for substantial losses in cultivated apples worldwide. An important mechanism of plant immunity is based on the recognition of conserved microbial molecules, named pathogen-associated or microbe-associated molecular patterns (PAMPs or MAMPs), through pattern recognition receptors (PRRs), leading to pattern-triggered immunity (PTI). The interspecies transfer of PRRs represents a promising strategy to engineer broad-spectrum and durable disease resistance in crops. EFR, the Arabidopsis thaliana PRR for the PAMP elf18 derived from the elongation factor thermal unstable (EF-Tu) proved to be effective in improving bacterial resistance when expressed into Solanaceae and other plant species. In this study, we tested whether EFR can affect the interaction of apple with E. amylovora by its ectopic expression in the susceptible apple rootstock M.26. Stable EFR expression led to the activation of PAMP-triggered immune response in apple leaves upon treatment with supernatant of E. amylovora, as measured by the production of reactive oxygen species and the induction of known defense genes. The amount of tissue necrosis associated with E. amylovora infection was significantly reduced in the EFR transgenic rootstock compared to the wild-type. Our results show that the expression of EFR in apple rootstock may be a valuable biotechnology strategy to improve the resistance of apple to fire blight.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available