4.7 Article

Glial and Neuronal Neuroglian, Semaphorin-1a and Plexin A Regulate Morphological and Functional Differentiation of Drosophila Insulin-Producing Cells

Journal

FRONTIERS IN ENDOCRINOLOGY
Volume 12, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fendo.2021.600251

Keywords

Drosophila; insulin-producing cells; glia; morphological and functional differentiation; neuron; cell adhesion molecules; axon guidance molecules; stress resistance

Funding

  1. FWO [G065408.N10, G078914N]
  2. KU Leuven grant [C14/17/099]

Ask authors/readers for more resources

The study investigates the development of insulin-producing cells in Drosophila using a transgenic reporter and identifies the crucial roles of Nrg, Sema-1a, and PlexA in the morphological differentiation of IPCs in both neurons and glial cells. The research also shows that these factors play a part in the functional differentiation of IPCs, suggesting evolutionary conservation in vertebrate endocrine system development.
The insulin-producing cells (IPCs), a group of 14 neurons in the Drosophila brain, regulate numerous processes, including energy homeostasis, lifespan, stress response, fecundity, and various behaviors, such as foraging and sleep. Despite their importance, little is known about the development and the factors that regulate morphological and functional differentiation of IPCs. In this study, we describe the use of a new transgenic reporter to characterize the role of the Drosophila L1-CAM homolog Neuroglian (Nrg), and the transmembrane Semaphorin-1a (Sema-1a) and its receptor Plexin A (PlexA) in the differentiation of the insulin-producing neurons. Loss of Nrg results in defasciculation and abnormal neurite branching, including ectopic neurites in the IPC neurons. Cell-type specific RNAi knockdown experiments reveal that Nrg, Sema-1a and PlexA are required in IPCs and glia to control normal morphological differentiation of IPCs albeit with a stronger contribution of Nrg and Sema-1a in glia and of PlexA in the IPCs. These observations provide new insights into the development of the IPC neurons and identify a novel role for Sema-1a in glia. In addition, we show that Nrg, Sema-1a and PlexA in glia and IPCs not only regulate morphological but also functional differentiation of the IPCs and that the functional deficits are likely independent of the morphological phenotypes. The requirements of nrg, Sema-1a, and PlexA in IPC development and the expression of their vertebrate counterparts in the hypothalamic-pituitary axis, suggest that these functions may be evolutionarily conserved in the establishment of vertebrate endocrine systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available