4.7 Article

Non-canonical NRF2 activation promotes a pro-diabetic shift in hepatic glucose metabolism

Journal

MOLECULAR METABOLISM
Volume 51, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.molmet.2021.101243

Keywords

Diabetes; Polyol pathway; Liver carbohydrate metabolism; NRF2

Funding

  1. National Institutes of Health [R01CA226920, R21ES027920, ES004940, ES031575]

Ask authors/readers for more resources

This study reveals that prolonged NRF2 activation through p62-mediated pathway increases carbohydrate flux in the polyol pathway, resulting in a shift in glucose homeostasis and promoting arsenic diabetogenicity.
Objective: NRF2, a transcription factor that regulates cellular redox and metabolic homeostasis, plays a dual role in human disease. While it is well known that canonical intermittent NRF2 activation protects against diabetes-induced tissue damage, little is known regarding the effects of prolonged non-canonical NRF2 activation in diabetes. The goal of this study was to determine the role and mechanisms of prolonged NRF2 activation in arsenic diabetogenicity. Methods: To test this, we utilized an integrated transcriptomic and metabolomic approach to assess diabetogenic changes in the livers of wild type, Nrf2-/-, p62-/-, or Nrf2-/-; p62-/- mice exposed to arsenic in the drinking water for 20 weeks. Results: In contrast to canonical oxidative/electrophilic activation, prolonged non-canonical NRF2 activation via p62-mediated sequestration of KEAP1 increases carbohydrate flux through the polyol pathway, resulting in a pro-diabetic shift in glucose homeostasis. This p62- and NRF2dependent increase in liver fructose metabolism and gluconeogenesis occurs through the upregulation of four novel NRF2 target genes, ketohexokinase (Khk), sorbitol dehydrogenase (Sord), triokinase/FMN cyclase (Tkfc), and hepatocyte nuclear factor 4 (Hnf4A). Conclusion: We demonstrate that NRF2 and p62 are essential for arsenic-mediated insulin resistance and glucose intolerance, revealing a prodiabetic role for prolonged NRF2 activation in arsenic diabetogenesis. (c) 2021 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available