4.6 Article

Fault geometry and slip distribution of the 2008 Mw 7.9 Wenchuan, China earthquake, inferred from GPS and InSAR measurements

Journal

GEOPHYSICAL JOURNAL INTERNATIONAL
Volume 208, Issue 2, Pages 748-766

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/gji/ggw421

Keywords

Space geodetic surveys; Earthquake dynamics; Earthquake source observations; Continental dynamics: compressional; Dynamics: seismotectonics

Funding

  1. National Science Foundation of China [41090294, 41674055]
  2. NSF [EAR-0911762, EAR-1014880]

Ask authors/readers for more resources

We revisit the problem of coseismic rupture of the 2008 M-w 7.9 Wenchuan earthquake. Precise determination of the fault structure and slip distribution provides critical information about the mechanical behaviour of the fault system and earthquake rupture. We use all the geodetic data available, craft a more realistic Earth structure and fault model compared to previous studies, and employ a nonlinear inversion scheme to optimally solve for the fault geometry and slip distribution. Compared to a homogeneous elastic half-space model and laterally uniform layered models, adopting separate layered elastic structure models on both sides of the Beichuan fault significantly improved data fitting. Our results reveal that: (1) The Beichuan fault is listric in shape, with near surface fault dip angles increasing from similar to 36 degrees. at the southwest end to similar to 83 degrees. at the northeast end of the rupture. (2) The fault rupture style changes from predominantly thrust at the southwest end to dextral at the northeast end of the fault rupture. (3) Fault slip peaks near the surface for most parts of the fault, with similar to 8.4 m thrust and similar to 5 m dextral slip near Hongkou and similar to 6 m thrust and similar to 8.4 m dextral slip near Beichuan, respectively. (4) The peak slips are located around fault geometric complexities, suggesting that earthquake style and rupture propagation were determined by fault zone geometric barriers. Such barriers exist primarily along restraining left stepping discontinuities of the dextral-compressional fault system. (5) The seismic moment released on the fault above 20 km depth is 8.2x10(21) N m, corresponding to an M-w 7.9 event. The seismic moments released on the local slip concentrations are equivalent to events of M-w 7.5 at Yingxiu-Hongkou, M-w 7.3 at Beichuan-Pingtong, M-w 7.2 near Qingping, M-w 7.1 near Qingchuan, and M-w 6.7 near Nanba, respectively. (6) The fault geometry and kinematics are consistent with a model in which crustal deformation at the eastern margin of the Tibetan plateau is decoupled by differential motion across a decollement in the mid crust, above which deformation is dominated by brittle reverse faulting and below which deformation occurs by viscous horizontal shortening and vertical thickening.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available