4.6 Review

Manufacturing Processes of Microporous Polyolefin Separators for Lithium-Ion Batteries and Correlations between Mechanical and Physical Properties

Journal

CRYSTALS
Volume 11, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/cryst11091013

Keywords

separators; lithium-ion batteries; mechanical properties; polyolefin

Funding

  1. National Research Foundation of Korea (NRF) - Korea government (MSIT) [NRF-2021R1G1A1011510]
  2. Nano.Material Technology Development Program through the NRF - MSIT [2009-0082580]

Ask authors/readers for more resources

This review summarizes the principles, manufacturing processes, and characteristics of microporous polyolefin separators for rechargeable lithium-ion batteries, providing guidance for the development of next-generation separators.
Rechargeable lithium-ion batteries (LIBs) have emerged as a key technology to meet the demand for electric vehicles, energy storage systems, and portable electronics. In LIBs, a permeable porous membrane (separator) is an essential component located between positive and negative electrodes to prevent physical contact between the two electrodes and transfer lithium ions. Among several types, microporous polyolefin membranes have dominated the commercial separator market for LIBs operated with liquid electrolytes, favored for their chemical and electrochemical stability, high mechanical strength, uniform pore size, and inexpensive manufacturing and materials cost. In this review, we summarize the principles and theoretical background underlying conventional manufacturing processes and newly emerging microporous polyolefin separators. Based on their mechanical and physical properties, as collected from the literature, we introduce a number of processing type-dependent characteristics and universal correlations among their properties. This will provide a macroscopic view on the subject and a guideline for the development of next-generation separators.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available