4.7 Article

Mode-sensitive magnetoelastic coupling in phononic-crystal magnomechanics

Journal

APL MATERIALS
Volume 9, Issue 7, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/5.0052150

Keywords

-

Ask authors/readers for more resources

The acoustically driven spin-wave resonance in a phononic-crystal cavity is numerically investigated, showing the potential to control spin-wave dynamics with ultrasmall and inhomogeneous mode structures. One specific monopole-like mode in the cavity can provide a versatile acoustic excitation scheme independent of the field-angle variation, offering a key technology for large-scale magnomechanical circuits.
The acoustically driven spin-wave resonance in a phononic-crystal cavity is numerically investigated. The designed cavity enables confinement of gigahertz vibrations in a wavelength-scale point-defect structure and sustains a variety of resonance modes. Inhomogeneous strain distributions in the modes modify the magnetostrictive coupling and the spin-wave excitation susceptible to an external-field orientation. In particular, a monopole-like mode in the cavity having a near-symmetrical pattern shows a subwavelength-scale mode volume and can provide a versatile acoustic excitation scheme independent of the field-angle variation. Thus, the phononic-crystal platform offers an alternative approach to acoustically control the spin-wave dynamics with ultrasmall and inhomogeneous mode structures, which will be a key technology to integrate and operate large-scale magnomechanical circuits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available