4.7 Article

High-Performance Transparent PEDOT: PSS/CNT Films for OLEDs

Journal

NANOMATERIALS
Volume 11, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/nano11082067

Keywords

carbon nanotubes; PEDOT; PSS; spin coating; OLEDs; lifetime

Funding

  1. Natural Science Foundation of Tianjin China
  2. Natural Science Foundation of Jiangxi Province China [20181BAB206008]
  3. Science and Technology Plans of Jingdezhen China [20182GYZD011-06]

Ask authors/readers for more resources

This paper reports on the simultaneous enhancement of the conductivity, roughness, and adhesion properties of transparent conductive films with PEDOT: PSS/CNTs, which were successfully used to produce high-performance OLEDs. The film demonstrated high transmittance, low sheet resistance, excellent adhesion, and low roughness, while significantly extending the lifetime of the OLEDs. Incorporating CNTs within PEDOT: PSS electrodes shows great potential for improving the performance of OLED devices.
Improved OLED systems have great potential for next-generation display applications. Carbon nanotubes (CNTs) and the conductive polymers poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS) have attracted great interest for advanced applications, such as optoelectronic products. In this paper, the simultaneous enhancement of the conductivity, roughness, and adhesion properties of transparent conductive films with PEDOT: PSS/CNTs is reported. These films prepared by a simple spin-coating process were successfully used to produce high-performance organic light-emitting diodes (OLEDs) with an improved lifetime. Addition of PEDOT: PSS lowered the film sheet resistance and CNTs helped to enhance the stability and maintain the lifetime of the OLEDs. In addition, treatment with methanol and nitric acid changed the morphology of the polymer film, which led to greatly reduced sheet resistance, enhanced substrate adhesion, and reduced film roughness. The best performance of the film (PEDOT: PSS: CNT = 110: 1, W/W) was 100.34 omega/sq.@ 90.1 T%. High transmittance, low sheet resistance, excellent adhesion, and low roughness (3.11 nm) were achieved synchronously. The fabricated OLED demonstrated a low minimum operating voltage (3 V) and could endure high voltage (20 V), at which its luminance reached 2973 cd/m(2). Thus, the incorporation of CNTs within PEDOT: PSS electrodes has great potential for the improvement of the performance of OLED devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available