4.7 Article

Naringenin Attenuates Non-Alcoholic Fatty Liver Disease by Enhancing Energy Expenditure and Regulating Autophagy via AMPK

Journal

FRONTIERS IN PHARMACOLOGY
Volume 12, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fphar.2021.687095

Keywords

non-alcoholic fatty liver disease; naringenin; energy expenditure; autophagy; mitochondrial biogenesis

Funding

  1. National Natural Science Foundation of China [81770580]
  2. Open Fund of the Sichuan Provincial Key Laboratory of Radiation Oncology [2020FSZLX-02]

Ask authors/readers for more resources

Naringenin (NAR) alleviates non-alcoholic fatty liver disease (NAFLD) by increasing energy expenditure and regulating autophagy through direct and indirect activation of AMPK signaling pathway. The direct binding of NAR and AMPK gamma 1 requires further validation.
Background: The prevalence of non-alcoholic fatty liver disease (NAFLD) keeps growing recently. Purpose: To investigate the effects and mechanisms of naringenin (NAR) on NAFLD. Methods: High-fat diet (HFD)-induced NAFLD rats were orally administered with NAR at 10, 30, and 90 mg/kg for 2 weeks. The serum level of triglyceride (TG), total cholesterol (TC), glutamic-oxaloacetic transaminase (AST), and glutamic-pyruvic transaminase (ALT) was measured. The hepatic histology was detected by H&E and oil red O staining. L02 and Huh-7 cells were induced by sodium oleate to establish a NAFLD cell model. The effects of NAR on lipid accumulation were detected by oil red O staining. The glucose uptake and ATP content of 3T3-L1 adipocytes and C2C12 myotubes were measured. The expression of proteins of the AMPK signaling pathway in 3T3-L1 adipocytes and C2C12 myotubes was assessed by Western blotting. The mitochondrial biogenesis of 3T3-L1 adipocytes and C2C12 myotubes was measured by mitotracker orange staining and Western blotting. The biomarkers of autophagy were detected by Western blotting and immunofluorescence. The binding of NAR to AMPK gamma 1 was analyzed by molecular docking. Chloroquine and compound C were employed to block autophagic flux and AMPK, respectively. Results: NAR alleviated HFD-induced NAFLD in rats at 10, 30, and 90 mg/kg. NAR attenuated lipid accumulation in L02 and Huh-7 cells at 0.7, 2.2, 6.7, and 20 mu M. NAR increased glucose uptake, decreased the ATP content, activated the CaMKK beta/AMPK/ACC pathway, and enhanced the mitochondrial biogenesis in 3T3-L1 adipocytes and C2C12 myotubes. NAR increased autophagy and promoted the initiation of autophagic flux in 3T3-L1 preadipocytes and C2C12 myoblasts, while it inhibited autophagy in NAFLD rats, 3T3-L1 adipocytes, and C2C12 myotubes. Molecular docking showed that NAR binds to AMPK gamma 1. Compound C blocked effects of NAR on lipid accumulation and autophagy in L02 cells. Conclusion: NAR alleviates NAFLD by increasing energy expenditure and regulating autophagy via activating AMPK directly and indirectly. The direct binding of NAR and AMPK gamma 1 needs further validation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available