4.6 Article

Enhanced Visible Light Photocatalytic Degradation of Methylene Blue by CdS-ZnS-BiPO4 Nanocomposites Prepared by a Solvent-Assisted Heating Method

Journal

CATALYSTS
Volume 11, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/catal11091095

Keywords

solvent-assisted heating; CdS-ZnS-BiPO4; white-light LED; photocatalytic degradation

Funding

  1. Ministry of Science and Technology of Taiwan [MOST 110-2113-M-018-001]

Ask authors/readers for more resources

The ternary CdS-ZnS-BiPO4 nanocomposite synthesized by a solvent-assisted heating method showed the highest visible light-induced photocatalytic degradation performance. The nanocomposites exhibited superior photocatalytic activity compared to pure BiPO4, CdS-BiPO4, and ZnS-BiPO4 due to enhanced charge separation efficiency and decreased carrier recombination.
In this study, a ternary CdS-ZnS-BiPO4 nanocomposite, synthesized by a solvent-assisted heating method, demonstrated the highest visible light-induced photocatalysis towards the degradation of methylene blue (MB) when comparing with BiPO4, CdS-BiPO4, and ZnS-BiPO4. Transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) were used to characterize the prepared nanocomposites. From UV-DRS results, the energy band gap of the prepared BiPO4 structures was 4.51 eV. When CdS nanoparticles were deposited on BiPO4 surface by a solvent-assisted heating method, the prepared nanocomposites exhibited visible light-responsive photocatalytic degradation toward MB (20 ppm). At a molar ratio of Cd to Zn as 1:7, the prepared CdS-ZnS-BiPO4 nanocomposites exhibited the best photocatalytic activity in degrading 95% of MB dyes, out-performing pure BiPO4, CdS-BiPO4, and ZnS-BiPO4 due to its enhanced charge separation efficiency and the lowered carrier recombination from the efficient p-n junction of unprecedented ternary composites. The investigations on mechanism conclude that the major reactive species responsible for MB degradation are holes and oxygen radicals. For practicality, the degradation efficiency for different dyestuff (Fast Green FCF, Rhodamine 6G, Acid Blue 1, methyl orange, and methyl red) degradation in the different water matrix samples (pond water, seawater, and lake water) by the prepared CdS-ZnS-BiPO4 nanocomposites was evaluated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available