4.5 Article

Compositional layering within the large low shear-wave velocity provinces in the lower mantle

Journal

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
Volume 17, Issue 12, Pages 5056-5077

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2016GC006605

Keywords

-

Funding

  1. NSF [EAR-1141938, EAR-1352214]
  2. DFG [TH1530/11-1]
  3. Packard Foundation
  4. Division Of Earth Sciences
  5. Directorate For Geosciences [1352214] Funding Source: National Science Foundation

Ask authors/readers for more resources

The large low shear-wave velocity provinces (LLSVP) are thermochemical anomalies in the deep Earth's mantle, thousands of km wide and similar to 1800 km high. This study explores the hypothesis that the LLSVPs are compositionally subdivided into two domains: a primordial bottom domain near the core-mantle boundary and a basaltic shallow domain that extends from 1100 to 2300 km depth. This hypothesis reconciles published observations in that it predicts that the two domains have different physical properties (bulk-sound versus shear-wave speed versus density anomalies), the transition in seismic velocities separating them is abrupt, and both domains remain seismically distinct from the ambient mantle. We here report underside reflections from the top of the LLSVP shallow domain, supporting a compositional origin. By exploring a suite of two-dimensional geodynamic models, we constrain the conditions under which well-separated double-layered piles with realistic geometry can persist for billions of years. Results show that long-term separation requires density differences of similar to 100 kg/m(3) between LLSVP materials, providing a constraint for origin and composition. The models further predict short-lived secondary plumelets to rise from LLSVP roofs and to entrain basaltic material that has evolved in the lower mantle. Long-lived, vigorous primary plumes instead rise from LLSVP margins and entrain a mix of materials, including small fractions of primordial material. These predictions are consistent with the locations of hot spots relative to LLSVPs, and address the geochemical and geochronological record of (oceanic) hot spot volcanism. The study of large-scale heterogeneity within LLSVPs has important implications for our understanding of the evolution and composition of the mantle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available