4.5 Article

Effects of crystallization and bubble nucleation on the seismic properties of magmas

Journal

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
Volume 17, Issue 2, Pages 602-615

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015GC006123

Keywords

seismic velocities; bubble nucleation; crystallization

Funding

  1. Swiss National Foundation [200020_140578, 200020_132878]
  2. Swiss National Science Foundation (SNF) [200020_140578, 200020_132878] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

Seismic tomography of potentially hazardous volcanoes is a prime tool to assess the location and dimensions of magmatic reservoirs. Seismic velocities are strongly affected by processes occurring within the conduit or in the magma chamber, such as crystallization and bubble exsolution. However, the limited number of constrained measurements does not allow yet to link seismic tomography and the textural state of a particular volcanic system. In this study, we investigated a chemically simplified melt in the system CaO-Na2O-Al2O3-SiO2-H2O-CO2, which undergoes plagioclase crystallization and bubble exsolution. A Paterson-type internally heated gas pressure apparatus was employed to measure ultrasonic velocities at a constant pressure of 250 MPa and at temperature from 850 to 700 degrees C. Magmatic processes such as crystallization, bubble nucleation, and coalescence have been recognized throughout the measurements of seismic velocities in the laboratory. Compression and shear wave velocities increase nonlinearly during crystallization. At a crystal fraction exceeding 0.45, the formation of a crystal network favors the propagation of seismic waves through magmatic liquids. However, bubble nucleation induced by crystallization leads to an increase of magma compressibility resulting in a lowering of the wave propagation velocities. These two processes occur simultaneously and have a competing influence on the seismic properties of magmas. In addition, as already observed by previous authors, when the bubble fraction is less than 0.10, the decrease in seismic velocities is more pronounced than for higher bubble fractions. The effect of bubble coalescence on elastic properties is thus lower than the effect of bubble nucleation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available