4.6 Article

Comparison Study of Metal Oxides (CeO2, CuO, SnO2, CdO, ZnO and TiO2) Decked Few Layered Graphene Nanocomposites for Dye-Sensitized Solar Cells

Journal

SUSTAINABILITY
Volume 13, Issue 14, Pages -

Publisher

MDPI
DOI: 10.3390/su13147685

Keywords

few-layered graphene; FLG; metal oxides nanocomposites; photoanode; solar cell; solar simulator; dye-sensitized solar cells

Funding

  1. Qatar National Research Fund [NPRP12S-0131-190030]

Ask authors/readers for more resources

Recent research has focused on the preparation of few layered graphene (FLG) with various metal oxides (MOs) using an eco-friendly ultrasonic assisted route, which shows superior photovoltaic properties when applied as photoanodes in dye sensitized solar cells (DSSCs), specifically FLG/TiO2 nanocomposites.
Recent research is focused on few layered graphene (FLG) with various metal oxides (MOs) as (MOs; CeO2, CuO, SnO2, CdO, ZnO, and TiO2) nanocomposite materials are alternatives to critically important in the fabrication of solar cell devices. In this work, FLG with different MOs nanocomposites were prepared by a novel eco-friendly viable ultrasonic assisted route (UAR). The prepared FLG/MO nanocomposites were performed with various characterization techniques. The crystal and phase compositional were carried out through using X-ray diffraction technique. Surface morphological studies by field emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). Spectroscopic methods were done by Raman and UV-Vis Diffuse reflectance spectra (UV-DRS). The prepared FLG/MO nanocomposites materials were used as a photoanode, in the fabrication of dye sensitized solar cells (DSSCs). Compared to TiO2 nanoparticles (NPs) and other FLG/MO nanocomposites, FLG/TiO2 nanocomposites exhibited superior photovoltaic properties. The obtained results indicate that FLG/TiO2 nanocomposites significantly improved the power conversion efficiency (PCE) of DSSCs. The photovoltaic analyses were performed in a solar simulator with an air mass (AM) of 1.5 G, power density of 100 m W/m(2), and current density-voltage (J-V) was investigated using N719 dye.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available