4.5 Review

Vital roles of sustainable nano-fertilizers in improving plant quality and quantity-an updated review

Journal

SAUDI JOURNAL OF BIOLOGICAL SCIENCES
Volume 28, Issue 12, Pages 7349-7359

Publisher

ELSEVIER
DOI: 10.1016/j.sjbs.2021.08.032

Keywords

Nano-fertilizers; Nano-particles; Ecofriendly; Nutrient use efficiency; Stress

Categories

Ask authors/readers for more resources

Nanotechnology in agriculture offers potential for increased production quality and reduced environmental impact. Nano-fertilizers and pesticides can improve nutrient efficiency and enhance plant resistance to abiotic stress and heavy metal toxicity.
Nanotechnology has received much attention because of its distinctive properties and many applications in various fields. Nanotechnology is a new approach to increase agricultural production with premium quality, environmental safety, biological support, and financial stability. Ecofriendly technology is becoming progressively important in modern agricultural applications as alternatives to traditional fertilizers and pesticides. Nanotechnology offers an alternative solution to overcome the disadvantages of conventional agriculture. Therefore, recent developments in using nanoparticles (NPs) in agriculture should be studied. This review presented a novel overview about the biosynthesis of NPs, using NPs as nano fertilizers and nano-pesticides, the applications of NPs in agriculture, and their role in enhancing the function of biofactors. We also, show recent studies on NPs-plant interactions, the fate and safety of nanomaterials in plants, and NPs' function in alleviating the adverse effects of abiotic stress and heavy metal toxicity. Nano-fertilizers are essential to reduce the use of inorganic fertilizers and reduce their antagonistic effects on the environment. Nano-fertilizers are more reactive, can penetrate the epidermis allowing for gradual release, and targeted distribution, and thus reducing nutrients surplus, enhancing nutrient use efficiency. We also, concluded that NPs are crucial in alleviating abiotic stress and heavy metal toxicity. However, some studies reported the toxic effects of NPs on higher plants by induction of oxidative stress signals via depositing NPs on the cell surface and in organelles. The knowledge in our review article is critical in defining limitations and future perspectives of using nano-fertilizers as an alternative to conventional fertilizers. (c) 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available