4.6 Article

Designing an Ultrathin Film Spectrometer Based on III-Nitride Light-Absorbing Nanostructures

Journal

MICROMACHINES
Volume 12, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/mi12070760

Keywords

gallium nitride; quantum confined Stark effect; strain control; compressive sensing

Funding

  1. University of Michigan
  2. Exercise & Sport Science Initiative (ESSI)
  3. College of Engineering Blue Sky Initiative

Ask authors/readers for more resources

This paper proposes a spectrometer design enabling an ultrathin form factor, integrating a large number of photodetectors exhibiting different absorption cut-off wavelengths on the chip. The introduction of a simple cone-shaped back-reflector enables a high light-harvesting efficiency design and improves the accuracy of spectral reconstruction. A light-harvesting efficiency as high as 60% was achieved with five InGaN/GaN multiple quantum wells for the visible wavelengths.
In this paper, a spectrometer design enabling an ultrathin form factor is proposed. Local strain engineering in group III-nitride semiconductor nanostructured light-absorbing elements enables the integration of a large number of photodetectors on the chip exhibiting different absorption cut-off wavelengths. The introduction of a simple cone-shaped back-reflector at the bottom side of the substrate enables a high light-harvesting efficiency design, which also improves the accuracy of spectral reconstruction. The cone-shaped back-reflector can be readily fabricated using mature patterned sapphire substrate processes. Our design was validated via numerical simulations with experimentally measured photodetector responsivities as the input. A light-harvesting efficiency as high as 60% was achieved with five InGaN/GaN multiple quantum wells for the visible wavelengths.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available