4.6 Review

Recent advances and perspectives on vanadium- and manganese-based cathode materials for aqueous zinc ion batteries

Journal

JOURNAL OF ENERGY CHEMISTRY
Volume 59, Issue -, Pages 134-159

Publisher

ELSEVIER
DOI: 10.1016/j.jechem.2020.10.044

Keywords

Zinc ion batteries; Cathode; Vanadium-based materials; Manganese-based materials; Recent advances

Funding

  1. National Natural Science Foundation of China [51872090, 51772097]
  2. Hebei Natural Science Fund for Distinguished Young Scholar [E2019209433, E2017209079]
  3. Hunan Provincial Science and Technology Plan Project of China [2016TP1007, 2017TP1001, 2018RS3009]

Ask authors/readers for more resources

The growing demand for energy storage has prompted researchers to explore advanced batteries, with aqueous zinc ion batteries (ZIBs) emerging as a promising option. While rechargeable ZIBs offer high safety, low cost, environmental friendliness, and competitive performance, the development of suitable zinc ion intercalation-type cathode materials remains a challenge. Vanadium-based and manganese-based compounds are the most advanced and widely used rechargeable ZIBs electrodes.
The growing demand for energy storage has inspired researchers' exploration of advanced batteries. Aqueous zinc ion batteries (ZIBs) are promising secondary chemical battery system that can be selected and pursued. Rechargeable ZIBs possess merits of high security, low cost, environmental friendliness, and competitive performance, and they are received a lot of attention. However, the development of suitable zinc ion intercalation-type cathode materials is still a big challenge, resulting in failing to meet the commercial needs of ZIBs. Both vanadium-based and manganese-based compounds are representative of the most advanced and most widely used rechargeable ZIBs electrodes. The valence state of vanadium is +2 similar to +5, which can realize multi-electron transfer in the redox reaction and has a high specific capacity. Most of the manganese-based compounds have tunnel structure or three-dimensional space frame, with enough space to accommodate zinc ions. In order to understand the energy storage mechanism and electrochemical performance of these two materials, a specialized review focusing on state-of-the-art developments is needed. This review offers access for researchers to keep abreast of the research progress of cathode materials for ZIBs. The latest advanced researches in vanadium-based and manganese-based cathode materials applied in aqueous ZIBs are highlighted. This article will provide useful guidance for future studies on cathode materials and aqueous ZIBs. (C) 2020 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available