4.6 Article

Anchoring Ni single atoms on sulfur-vacancy-enriched ZnIn2S4 nanosheets for boosting photocatalytic hydrogen evolution

Journal

JOURNAL OF ENERGY CHEMISTRY
Volume 58, Issue -, Pages 408-414

Publisher

ELSEVIER
DOI: 10.1016/j.jechem.2020.10.030

Keywords

ZnIn2S4 nanosheets; Sulfur vacancies; Single-atom Ni; Charge carriers separation; Photocatalytic hydrogen evolution

Funding

  1. National Natural Science Foundation of China [51702087, 21673066]
  2. China Postdoctoral Science Foundation [2019M652516]

Ask authors/readers for more resources

Manipulating the structure of photocatalysts at an atomic scale, such as anchoring single Ni atoms on ZnIn2S4 nanosheets, significantly improves photocatalytic performance by promoting carrier separation and prolonging carrier life. In situ ESR confirms that single Ni atoms act as electron trapping centers for proton reduction, leading to a significantly higher hydrogen evolution rate. This work provides a new perspective on manipulating single-atom cocatalysts and sulfur vacancies to enhance photocatalytic hydrogen evolution.
Structure manipulation of photocatalysts at an atomic scale is a promising way to improve its photocatalytic performance. Herein, we realize the anchoring of single Ni atoms on the ZnIn2S4 nanosheets with rich sulfur vacancies. Experimental results demonstrate that single Ni atoms induce the formation of NiO-M (Zn/In) atomic interface, which can efficiently promote the carriers separation and prolong the carrier life time. In addition, in situ electron spin resonance spectroscopy (ESR) confirms that the single Ni atoms act as an electron trapping center for protons reduction. As a result, the single Ni atoms decorated ZnIn2S4 nanosheets with rich sulfur vacancies (Ni/ZnIn2S4-RVs) shows a hydrogen evolution rate up to 89.4 lmol h(-1), almost 5.7 and 2.3 times higher compared to that of ZnIn2S4 nanosheets with poor sulfur vacancies and rich sulfur vacancies (denoted as ZnIn2S4-PVs and ZnIn2S4-RVs). This work opens up a new perspective manipulating the single-atom cocatalyst and sulfur vacancy on sulfide supports for improving photocatalytic hydrogen evolution. (C) 2020 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available