4.5 Article

Numerical modelling study of a modified sandbag system for ballistic protection

Journal

JOURNAL OF COMPUTATIONAL SCIENCE
Volume 53, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jocs.2021.101403

Keywords

Compaction; Energy absorption; Sandbag; Simulation; Ballistic plate

Ask authors/readers for more resources

The study found that a layer of compressed sand formed around the projectile aids in energy absorption and dissipation during impact. The addition of plates improved the energy absorption characteristics, with Aluminum plates being the preferred choice for a modified sandbag.
Modern field fortification systems are very large and cause a logistical burden during setup, thus setting the requirement for their modification. A simulation study was conducted to study the correlation between the compaction of sand and the energy absorbed by it when impacted by a solid steel projectile at 850 m/s. Furthermore, the sandbag was modified by the addition of plates in the system to observe the change in projectile penetration and the energy absorption behaviour of the sand. The factors considered for this study were the plate thickness (15 mm, 25 mm), plate material (aluminium, concrete, plexiglass, polycarbonate, steel) and plate location (226 mm, 236 mm, 256 mm from the point of impact). It was observed that a layer of compressed sand is formed around the projectile, aiding the energy absorption and dissipation process during impact. Upon addition of the plate, it was observed that the modified system (plate and sand) absorbed maximum energy when the plate is placed closest to the point of maximum penetration without the plate. It was also noted that the addition of the plate enhanced energy absorption characteristics of the system compared to conventional sandbags because of increased compaction of sand. From the study, it was observed that the plexiglass and polycarbonate plates had the maximum energy absorption and maximum deformation. The steel plate had the least energy absorption and minimal deformation. Concrete and Aluminium had comparable areal density, energy absorption and lowest deformation, making them the preferred choice of plate material for a modified sandbag. The numerical studies were verified using a gas gun and a modified sandbag with Aluminium plates to show that the addition of a plate improves compaction behaviour of sand.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available