4.7 Article

Integrated Transmission and Distribution System Expansion Planning Under Uncertainty

Journal

IEEE TRANSACTIONS ON SMART GRID
Volume 12, Issue 5, Pages 4113-4125

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSG.2021.3071385

Keywords

Uncertainty; Indexes; Investment; Generators; Planning; Stochastic processes; Distribution networks; Distributed generation; integrated transmission and distribution planning; network and generation investment decisions; stochastic programming; uncertainty

Funding

  1. Ministry of Science, Innovation and Universities of Spain [RTI2018-096108-A-I00, RTI2018-098703-B-I00]
  2. Universidad de Castilla-La Mancha [2020-GRIN-29009, TSG-01106-2020]

Ask authors/readers for more resources

The paper addresses the integrated expansion planning problem of transmission and distribution systems in the context of renewable-based generation. It aims to find the optimal expansion plan under uncertainty, utilizing a stochastic programming model with a scenario-based deterministic equivalent to minimize expected total costs. The proposed approach ensures finite convergence to optimality and shows effective performance through numerical results.
The increased deployment of distributed generation calls for the coordination and interaction between the transmission and distribution levels. This requirement is particularly relevant for planning purposes when renewable-based generation is involved. Unfortunately, in current industry practice, transmission and distribution network planners solve their problems independent of each other, thereby leading to suboptimal solutions. Within this context, this paper addresses the integrated expansion planning problem of transmission and distribution systems where investments in network and generation assets are jointly considered. Several alternatives are available for the installation of lines as well as conventional and renewable-based generators at both system levels. Thus, the optimal expansion plan identifies the best alternative for the candidate assets under the uncertainty associated with demand and renewable-based power production. The proposed model is an instance of stochastic programming wherein uncertainty is characterized through a set of scenarios that explicitly capture the correlation between the uncertain parameters. The resulting stochastic program is driven by the minimization of the expected total cost, which comprises the costs related to investment decisions and system operation. The associated scenario-based deterministic equivalent is formulated as a mixed-integer linear program for which finite convergence to optimality is guaranteed. Numerical results show the effective performance of the proposed approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available