4.7 Article

Life on the Rocks: First Insights Into the Microbiota of the Threatened Aquatic Rheophyte Hanseniella heterophylla

Journal

FRONTIERS IN PLANT SCIENCE
Volume 12, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2021.634960

Keywords

aquatic plant; microbiome; indicator species; anthropogenic disturbance; rocks; remediation

Categories

Funding

  1. Department of Soil Ecology
  2. UFZ-Helmholtz Centre for Environmental Research
  3. Thailand Research Grant, Rajamangala University of Technology Phra Nakhon

Ask authors/readers for more resources

The microbial communities of the aquatic plant Hanseniella heterophylla are diverse and include beneficial microbes. There are distinct differences in the microbial compositions between highly disturbed and low disturbed areas, with potentially harmful microbes present in highly disturbed areas that may pose a threat to human health.
Little is known about microbial communities of aquatic plants despite their crucial ecosystem function in aquatic ecosystems. Here, we analyzed the microbiota of an aquatic rheophyte, Hanseniella heterophylla, growing at three areas differing in their degree of anthropogenic disturbance in Thailand employing a metabarcoding approach. Our results show that diverse taxonomic and functional groups of microbes colonize H. heterophylla. Proteobacteria, Actinobacteria, Dothideomycetes, and Sordariomycetes form the backbone of the microbiota. Surprisingly, the beneficial microbes reported from plant microbiomes in terrestrial habitats, such as N-fixing bacteria and ectomycorrhizal fungi, were also frequently detected. We showed that biofilms for attachment of H. heterophylla plants to rocks may associate with diverse cyanobacteria (distributed in eight families, including Chroococcidiopsaceae, Coleofasciculaceae, Leptolyngbyaceae, Microcystaceae, Nostocaceae, Phormidiaceae, Synechococcaceae, and Xenococcaceae) and other rock biofilm-forming bacteria (mainly Acinetobacter, Pseudomonas, and Flavobacterium). We found distinct community compositions of both bacteria and fungi at high and low anthropogenic disturbance levels regardless of the study areas. In the highly disturbed area, we found strong enrichment of Gammaproteobacteria and Tremellomycetes coupled with significant decline of total bacterial OTU richness. Bacteria involved with sulfamethoxazole (antibiotic) degradation and human pathogenic fungi (Candida, Cryptococcus, Trichosporon, and Rhodotorula) were exclusively detected as indicator microorganisms in H. heterophylla microbiota growing in a highly disturbed area, which can pose a major threat to human health. We conclude that aquatic plant microbiota are sensitive to anthropogenic disturbance. Our results also unravel the potential use of this plant as biological indicators in remediation or treatment of such disturbed ecosystems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available