4.7 Article

Transcriptome and Biochemical Analysis Jointly Reveal the Effects of Bacillus cereus AR156 on Postharvest Strawberry Gray Mold and Fruit Quality

Journal

FRONTIERS IN PLANT SCIENCE
Volume 12, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2021.700446

Keywords

strawberry; gray mold; biological control; Bacillus cereus AR156; induced systemic resistance (ISR); transcriptome profiling

Categories

Funding

  1. National Natural Science Foundation of China [31972322, 31701829]
  2. Key Research and Development Projects in Jiangsu Province [BE2020408]
  3. Independent Innovation Project of Agricultural Science and Technology in Jiangsu Province [CX (19) 2008]
  4. Technical System of Chinese Herbal Medicine Industry [CARS21]
  5. Opening Project of Key Construction Laboratory of Probiotics in Jiangsu Province [JSYSZJ2019003]
  6. China Postdoctoral Science Foundation [2019M651863]

Ask authors/readers for more resources

The study demonstrates that treatment with Bacillus cereus AR156 can effectively control postharvest gray mold disease in strawberries and delay fruit senescence. In addition to enhancing fruit reactive oxygen-scavenging and defense-related enzyme activities, the biocontrol effects are manifested through the induction of host responses and increasing the accumulation of resistance-related substances.
Postharvest strawberry is susceptible to gray mold disease caused by Botrytis cinerea, which seriously damage the storage capacity of fruits. Biological control has been implicated as an effective and safe method to suppress plant disease. The aim of this study is to evaluate the postharvest disease control ability of Bacillus cereus AR156 and explore the response of strawberry fruit to this biocontrol microorganism. Bacillus cereus AR156 treatment significantly suppressed gray mold disease and postponed the strawberry senescence during storage. The bacterium pretreatment remarkably enhanced the reactive oxygen-scavenging and defense-related activities of enzymes. The promotion on the expression of the encoding-genes was confirmed by quantitative real-time PCR (qRT-PCR) that significantly increased the expression of the marker genes of salicylic acid (SA) signaling pathway, such as PR1, PR2, and PR5, instead of that of the jasmonic acid (JA)/ethylene (ET) pathway, which was also shown. Moreover, through transcriptome profiling, about 6,781 differentially expressed genes (DEGS) in strawberry upon AR156 treatment were identified. The gene ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that AR156 altered the transcription of numerous transcription factors and genes involved in the SA-related plant disease resistance, metabolism, and biosynthesis of benzoxazinoids and flavonoids. This study offered a non-antagonistic Bacillus as a method for postharvest strawberry storage and disease control, and further revealed that the biocontrol effects were arisen from the induction of host responses on the transcription level and subsequent resistance-related substance accumulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available