4.7 Article

Compensation of Wild Plants Weakens the Effects of Crop-Wild Gene Flow on Wild Rice Populations

Journal

FRONTIERS IN PLANT SCIENCE
Volume 12, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2021.681008

Keywords

compensation; crop-wild gene flow; fitness; hybrid vigour; tolerance; transgene

Categories

Funding

  1. National Natural Science Foundation of China [31170505, 31570383, 91231101]
  2. Biodiversity Survey, Observation and Assessment Program of Ministry of Ecology and Environment of China [2019-5-12]
  3. Key Project for Breeding Genetically Modified Organisms [2009ZX08011-012B]

Ask authors/readers for more resources

The study found that under continuous crop-wild gene flow, wild rice showed better adaptability and higher insect resistance compared to crop and hybrid rice, suggesting a mechanism for mitigating the potential impact of crop alleles on wild plants.
Crop-wild gene flow may alter the fitness of the recipient i.e., crop-wild hybrids, then potentially impact wild populations, especially for the gene flow carrying selective advantageous crop alleles, such as transgenes conferring insect resistance. Given the continuous crop-wild gene flow since crop domestication and the occasionally stressful environments, the extant wild populations of most crops are still wild. One interpretation for this phenomenon is that wild populations have the mechanism buffered for the effects of crop alleles. However, solid evidence for this has been scarce. We used wild rice (Oryza rufipogon) and transgenic (Bt/CpTI) rice (O. sativa) as a crop-wild gene flow model and established cultivated, wild, and F7 hybrid rice populations under four levels of insect (Chilo suppressalis) pressure. Then, we measured the trait performance of the plants and estimated fitness to test the compensatory response of relatively high fitness compared to the level of insect damage. The performance of all plants varied with the insect pressure level; wild plants had higher insect-tolerance that was expressed as over- or equal-compensatory responses to insect damage, whereas crop and hybrids exhibited under-compensatory responses. The higher compensation resulted in a better performance of wild rice under insect pressure where transgenes conferring insect resistance had a somewhat beneficial effect. Remarkable hybrid vigour and the benefit effect of transgenes increased the fitness of hybrids together, but this joint effect was weakened by the compensation of wild plants. These results suggest that compensation to environmental stress may reduce the potential impacts of crop alleles on wild plants, thereby it is a mechanism maintaining the wild characteristics of wild populations under the scenario of continuous crop-wild gene flow.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available