4.7 Article

GIS-Based Analysis for UAV-Supported Field Experiments Reveals Soybean Traits Associated With Rotational Benefit

Journal

FRONTIERS IN PLANT SCIENCE
Volume 12, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2021.637694

Keywords

crop rotation; drone; experimental design; legume; wheat; yield

Categories

Funding

  1. JSPS KAKENHI [18KT0087]
  2. Takano Life Science Research Foundation
  3. JST CREST Program [JPMJCR1512]
  4. SICORP Program [JPMJSC16H2]
  5. aXis program [JPMJAS2018]
  6. Japan Science and Technology Agency PRESTO Grants [JPMJPR17Q8]
  7. Grants-in-Aid for Scientific Research [18KT0087] Funding Source: KAKEN

Ask authors/readers for more resources

Recent advances in UAV remote sensing and image analysis have led to the development of a GIS-based framework, GAUSS, which successfully integrates large imagery datasets with manually collected data. A field cultivation experiment focusing on soybean-wheat crop rotation demonstrated the framework's effectiveness in predicting crop yield and identifying the impact of soybean cultivars on wheat yield.
Recent advances in unmanned aerial vehicle (UAV) remote sensing and image analysis provide large amounts of plant canopy data, but there is no method to integrate the large imagery datasets with the much smaller manually collected datasets. A simple geographic information system (GIS)-based analysis for a UAV-supported field study (GAUSS) analytical framework was developed to integrate these datasets. It has three steps: developing a model for predicting sample values from UAV imagery, field gridding and trait value prediction, and statistical testing of predicted values. A field cultivation experiment was conducted to examine the effectiveness of the GAUSS framework, using a soybean-wheat crop rotation as the model system Fourteen soybean cultivars and subsequently a single wheat cultivar were grown in the same field. The crop rotation benefits of the soybeans for wheat yield were examined using GAUSS. Combining manually sampled data (n = 143) and pixel-based UAV imagery indices produced a large amount of high-spatial-resolution predicted wheat yields (n = 8,756). Significant differences were detected among soybean cultivars in their effects on wheat yield, and soybean plant traits were associated with the increases. This is the first reported study that links traits of legume plants with rotational benefits to the subsequent crop. Although some limitations and challenges remain, the GAUSS approach can be applied to many types of field-based plant experimentation, and has potential for extensive use in future studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available