4.5 Article

Circular RNA translation, a path to hidden proteome

Journal

WILEY INTERDISCIPLINARY REVIEWS-RNA
Volume 13, Issue 1, Pages -

Publisher

WILEY
DOI: 10.1002/wrna.1685

Keywords

cap-independent translation; circRNA; IRES; m6A; polypeptide

Categories

Funding

  1. DBT/Wellcome Trust India Alliance Fellowship [IA/I/18/2/504017]
  2. Institute of Life Sciences, Department of Biotechnology, India

Ask authors/readers for more resources

Most RNA molecules in cells are noncoding RNAs, while a small percentage of circRNAs have the potential to translate into proteins through a cap-independent translation initiation mechanism. Studying circRNA translation will uncover the hidden proteome and its therapeutic implications in human health.
Functional proteins in the cell are translated from the messenger RNA (mRNA) molecules, constituting less than 5% of the cellular transcriptome. The majority of the RNA molecules in the cell are noncoding RNAs, including rRNA, tRNA, snRNA, piRNA, lncRNA, microRNA, and poorly characterized circular RNAs (circRNAs). Recent studies established that circRNAs regulate gene expression by associating with RNA-binding proteins and microRNAs. With the growing understanding of circRNA functions, a subset of circRNAs has been reported to translate into proteins. Interestingly, the presence of Open Reading Frames (ORFs), N6-methyladenosine (m6A) modifications, and internal ribosomal entry sites (IRES) in the circRNA sequences indicate their coding potential through the cap-independent translation initiation mechanism. The purpose of this review is to highlight the mechanism of circRNA translation and the importance of circRNA-encoded proteins (circ-proteins) in cellular physiology and pathology. Here, we discuss the computational and molecular methods currently utilized to systematically identify translatable circRNAs and the functional characterization of the circ-proteins. We foresee that the ongoing and future studies on circRNA translation will uncover the hidden proteome and their therapeutic implications in human health. This article is categorized under: RNA Methods > RNA Analyses in Cells Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Translation > Mechanisms

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available