4.6 Article

Ion-Exchange Technology for Lactic Acid Recovery in Downstream Processing: Equilibrium and Kinetic Parameters

Journal

WATER
Volume 13, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/w13111572

Keywords

organic acid; circular economy; optimization process; bio-economy; response surface methodology

Funding

  1. R2MIT project - Spanish Ministry of Economy and Competitiveness (MINECO) [CTM2017-85346-R]
  2. Catalan Government, Spain [2017-SGR-312]

Ask authors/readers for more resources

The study proposed the use of ion-exchange technology for lactic acid recovery, with A100 resin showing the best removal efficiency under specific conditions. The sorption process followed the Langmuir isotherm and a pseudo-second order kinetic model.
The downstream processing for the separation and purification of lactic acid is a hot research area in the bio-refinery field due to its continuous growing market in different sectors, such as the food, cosmetic and pharmaceutical sectors. In this work, the use of ion-exchange technology for lactic acid recovery is proposed. For that, four anion exchange resins with different polymer structures and functional groups were tested (A100, MN100, A200E and MP64). The sorption process was optimized by the Box-Behnken factorial design, and the experimental data obtained in the sorption process were analyzed by using the response surface methodology and fitted at different isotherms and kinetics models. Moreover, regenerant type, contact time and solid/liquid ratio were evaluated in the desorption process. Results showed that the best resin for lactic acid removal was A100, at pH = 4, with a resin/lactic acid solution ratio of 0.15 g/mL during a maximum of 1 h, achieving 85% of lactic acid removal. Moreover, equilibrium data sorption of lactic acid onto A100 resin was fitted by a Langmuir isotherm and by a kinetic model of a pseudo-second order. In addition, in the desorption process, it was stablished that a resin/regenerant ratio of 0.15 g/mL during 30 min with 0.1 M of NaOH solution provided the best results (4.45 +/- 0.08 mg/g).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available