4.6 Article

Morphodynamic Modelling with Uncertain Geometry Input

Journal

WATER
Volume 13, Issue 16, Pages -

Publisher

MDPI
DOI: 10.3390/w13162248

Keywords

morphodynamic modelling; sediment transport; cross-profile data; airborne laser bathymetry

Funding

  1. EU

Ask authors/readers for more resources

Different spatial resolutions of datasets have varying impacts on riverbed surveys and model predictions, with high-resolution data more accurately reflecting riverbed geometry. However, in areas with more homogeneous features, cross-profile data may provide a more accurate representation.
For morphodynamic modelling, riverbed survey data are essential as the basis for the evaluation of temporal riverbed development, mesh creation, and model calibration. To study the effects of uncertain geometry input on these issues, datasets of different spatial resolutions were analysed. As a result, cross-profile data were derived from high-resolution survey data, which are available for a river reach in the Upper Danube in Bavaria for several periods. Finally, the prediction quality of simulations based on cross-profile and high-resolution spatial data was assessed. The analysis of both datasets shows continuous riverbed erosion but of different magnitudes. However, complex riverbed geometry due to, e.g., scours, is depicted poorly by cross-profile data. In more homogenously characterised reaches, cross-profile data significantly more closely represents the riverbed geometry than the high-resolution spatial data base. Local misinterpretation of riverbed geometry by cross-profile data leads to deviations of calibration parameters in the entire study area. Consequently, these deviations in calibration outcome effect the model predictions. In this case, cross-profile calibration generally induces higher transport capacities, leading to more erosion in the study area compared to the model based on high-resolution spatial calibration. The general shape of predicted riverbed geometries is found to be similar but with local deviations, which are not limited to areas with complex river geometry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available