4.7 Article

Improving Recycled Poly(lactic Acid) Biopolymer Properties by Chain Extension Using Block Copolymers Synthesized by Nitroxide-Mediated Polymerization (NMP)

Journal

POLYMERS
Volume 13, Issue 16, Pages -

Publisher

MDPI
DOI: 10.3390/polym13162791

Keywords

biopolyester; poly(lactic acid); chain extenders; polymer recycling; biopolymers; nitroxide-mediated polymerization

Funding

  1. Direccion General de Asuntos del Personal Academico (DGAPA), Universidad Nacional Autonoma de Mexico (UNAM), Mexico [PAPIIT IV100119]
  2. Facultad de Quimica (FQ), UNAM [PAIP 5000-9078]
  3. CIQA [P6594]

Ask authors/readers for more resources

This study evaluates the use of P(S-co-GMA)-b-S copolymers synthesized by nitroxide mediated polymerization as chain extenders in the recycling of poly(lactic acid) biopolyester. The addition of such copolymers significantly increases the viscosity average molecular weight of modified polymeric materials and improves their performance to approach that of pristine PLA.
The aim of this contribution is to assess the use poly(styrene-co-glycidyl methacrylate-b-styrene) copolymers synthesized by nitroxide mediated polymerization (NMP) as chain extenders in the recycling of poly(lactic acid) biopolyester. Concisely, the addition of such block copolymers during the melt processing of recycled poly(lactic acid) (rPLA) leads to important increases in the viscosity average molecular weight of modified polymeric materials. Molar masses increase from 31,000 g/mol for rPLA to 48,000 g mol(-1) for the resulting rPLA/copolymer blends (bPLA). Fortuitously, this last value is nearly the same as the one for pristine PLA, which constitutes a first piece of evidence of the molar mass increase of the recycled biopolymer. Thermograms of chain extended rPLA show significant decreases in cold crystallization temperature and higher crystallinity degrees due to the chain extension process using NMP-synthesized copolymers. It was found that increasing epoxide content in the NMP-synthesized copolymers leads to increased degrees of crystallinity and lower cold crystallization temperatures. The rheological appraisal has shown that the addition of NMP synthesized copolymers markedly increases complex viscosity and elastic modulus of rPLA. Our results indicate that P(S-co-GMA)-b-S) copolymers act as efficient chain extenders of rPLA, likely due to the reaction between the epoxy groups present in P(S-co-GMA)-b-PS and the carboxyl acid groups present in rPLA. This reaction positively affects viscometric molar mass of PLA and its performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available