4.7 Article

Phase Transitions in Poly(vinylidene fluoride)/Polymethylene-Based Diblock Copolymers and Blends

Journal

POLYMERS
Volume 13, Issue 15, Pages -

Publisher

MDPI
DOI: 10.3390/polym13152442

Keywords

poly(vinylidene fluoride); polymethylene; blends; diblock copolymers; ferroelectric phase

Funding

  1. MINECO [MAT2017-83014-C2-1-P]
  2. Basque Government [IT1309-19]
  3. ALBA [2020084441]

Ask authors/readers for more resources

By comparing the crystallization and morphology of two linear diblock copolymers and blends, it was found that the diblock copolymers are miscible in the melt state while the blends are immiscible. The crystallization of PVDF is strongly influenced by its environment, with different polymorphic compositions induced by cooling rate or crystallization temperature.
The crystallization and morphology of two linear diblock copolymers based on polymethylene (PM) and poly(vinylidene fluoride) (PVDF) with compositions PM23-b-PVDF77 and PM38-b-PVDF62 (where the subscripts indicate the relative compositions in wt%) were compared with blends of neat components with identical compositions. The samples were studied by SAXS (Small Angle X-ray Scattering), WAXS (Wide Angle X-ray Scattering), PLOM (Polarized Light Optical Microscopy), TEM (Transmission Electron Microscopy), DSC (Differential Scanning Calorimetry), BDS (broadband dielectric spectroscopy), and FTIR (Fourier Transform Infrared Spectroscopy). The results showed that the blends are immiscible, while the diblock copolymers are miscible in the melt state (or very weakly segregated). The PVDF component crystallization was studied in detail. It was found that the polymorphic structure of PVDF was a strong function of its environment. The number of polymorphs and their amount depended on whether it was on its own as a homopolymer, as a block component in the diblock copolymers or as an immiscible phase in the blends. The cooling rate in non-isothermal crystallization or the crystallization temperature in isothermal tests also induced different polymorphic compositions in the PVDF crystals. As a result, we were able to produce samples with exclusive ferroelectric phases at specific preparation conditions, while others with mixtures of paraelectric and ferroelectric phases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available