4.7 Article

CXCL1: A new diagnostic biomarker for human tuberculosis discovered using Diversity Outbred mice

Journal

PLOS PATHOGENS
Volume 17, Issue 8, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1009773

Keywords

-

Funding

  1. NIH [UL1-TR001430, R21 AI115038, R01 HL145411]
  2. American Lung Association Biomedical Research Grant [RG349504]
  3. Boehringer Ingelheim Veterinary Scholars Research Program [V340PR0455]
  4. Summer Research Program - Cummings School of Veterinary Medicine at Tufts University

Ask authors/readers for more resources

The study identified five protein biomarker candidates using a Diversity Outbred mouse population, with CXCL1 and MMP8 being the most promising. Through statistical and machine learning analysis, CXCL1 was found to meet the World Health Organization's criteria for a triage diagnostic test to distinguish active TB from other conditions in human patients.
More humans have died of tuberculosis (TB) than any other infectious disease and millions still die each year. Experts advocate for blood-based, serum protein biomarkers to help diagnose TB, which afflicts millions of people in high-burden countries. However, the protein biomarker pipeline is small. Here, we used the Diversity Outbred (DO) mouse population to address this gap, identifying five protein biomarker candidates. One protein biomarker, serum CXCL1, met the World Health Organization's Targeted Product Profile for a triage test to diagnose active TB from latent M.tb infection (LTBI), non-TB lung disease, and normal sera in HIV-negative, adults from South Africa and Vietnam. To find the biomarker candidates, we quantified seven immune cytokines and four inflammatory proteins corresponding to highly expressed genes unique to progressor DO mice. Next, we applied statistical and machine learning methods to the data, i.e., 11 proteins in lungs from 453 infected and 29 non-infected mice. After searching all combinations of five algorithms and 239 protein subsets, validating, and testing the findings on independent data, two combinations accurately diagnosed progressor DO mice: Logistic Regression using MMP8; and Gradient Tree Boosting using a panel of 4: CXCL1, CXCL2, TNF, IL-10. Of those five protein biomarker candidates, two (MMP8 and CXCL1) were crucial for classifying DO mice; were above the limit of detection in most human serum samples; and had not been widely assessed for diagnostic performance in humans before. In patient sera, CXCL1 exceeded the triage diagnostic test criteria (>90% sensitivity; >70% specificity), while MMP8 did not. Using Area Under the Curve analyses, CXCL1 averaged 94.5% sensitivity and 88.8% specificity for active pulmonary TB (ATB) vs LTBI; 90.9% sensitivity and 71.4% specificity for ATB vs non-TB; and 100.0% sensitivity and 98.4% specificity for ATB vs normal sera. Our findings overall show that the DO mouse population can discover diagnostic-quality, serum protein biomarkers of human TB. Author summary More humans die of tuberculosis (TB) than any other infectious disease, yet diagnostic tools remain limited. Here, we used the Diversity Outbred mouse population to discover candidate protein biomarkers of human TB. By applying statistical methods and machine learning to multidimensional data, we identified CXCL1 and MMP8 as the two most promising protein biomarker candidates. When evaluated in samples from human patients, CXCL1 achieved the World Health Organization's targeted profile for a triage diagnostic test, discriminating active TB from important clinical differential diagnoses: latent Mtb infection and non-TB lung disease in HIV-negative adults. Overall, our studies show how a translationally relevant animal population model can accelerate TB biomarker discovery, validation, and testing for humans.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available