4.7 Article

Spider Web-Inspired Graphene Skeleton-Based High Thermal Conductivity Phase Change Nanocomposites for Battery Thermal Management

Journal

NANO-MICRO LETTERS
Volume 13, Issue 1, Pages -

Publisher

SHANGHAI JIAO TONG UNIV PRESS
DOI: 10.1007/s40820-021-00702-7

Keywords

Thermal conductivity; Radial freeze-casting; Phase change materials; 3D graphene aerogel; Thermal management

Funding

  1. National Natural Science Foundation of China [U19A20105, 51877132]

Ask authors/readers for more resources

This study introduces a new strategy for fabricating highly thermally conductive phase change composites by constructing a spider web-like structured graphene skeleton in paraffin wax, significantly enhancing the material's thermal conductivity. The results demonstrate that the composite exhibits remarkably high thermal conductivity enhancements at low filler loading, showing promising applications in battery thermal management.
Phase change materials (PCMs) can be used for efficient thermal energy harvesting, which has great potential for cost-effective thermal management and energy storage. However, the low intrinsic thermal conductivity of polymeric PCMs is a bottleneck for fast and efficient heat harvesting. Simultaneously, it is also a challenge to achieve a high thermal conductivity for phase change nanocomposites at low filler loading. Although constructing a three-dimensional (3D) thermally conductive network within PCMs can address these problems, the anisotropy of the 3D framework usually leads to poor thermal conductivity in the direction perpendicular to the alignment of fillers. Inspired by the interlaced structure of spider webs in nature, this study reports a new strategy for fabricating highly thermally conductive phase change composites (sw-GS/PW) with a 3D spider web (sw)-like structured graphene skeleton (GS) by hydrothermal reaction, radial freeze-casting and vacuum impregnation in paraffin wax (PW). The results show that the sw-GS hardly affected the phase transformation behavior of PW at low loading. Especially, sw-GS/PW exhibits both high cross-plane and in-plane thermal conductivity enhancements of similar to 1260% and similar to 840%, respectively, at an ultra-low filler loading of 2.25 vol.%. The thermal infrared results also demonstrate that sw-GS/PW possessed promising applications in battery thermal management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available