4.7 Article

A Healable and Mechanically Enhanced Composite with Segregated Conductive Network Structure for High-Efficient Electromagnetic Interference Shielding

Journal

NANO-MICRO LETTERS
Volume 13, Issue 1, Pages -

Publisher

SHANGHAI JIAO TONG UNIV PRESS
DOI: 10.1007/s40820-021-00693-5

Keywords

Electrostatic attraction; Healable; EMI shielding; Diels-Alder reaction

Funding

  1. National Natural Science Foundation of China [51973142, 51721091, 21878194]
  2. National Key Research and Development Program of China [2018YFB0704200]
  3. State Key Laboratory of Solidification Processing (Northwestern Polytechnical University) [SKLSP201918]

Ask authors/readers for more resources

This study developed a healable and segregated CNT/GO/PU composite with excellent EMI SE using an electrostatic assembly strategy, maintaining high EMI SE even under complex mechanical conditions. The Diels-Alder bonds in the PU microsphere allowed the composite to retain 90% of EMI SE after three cutting/healing cycles, demonstrating good mechanical properties as well.
It is still challenging for conductive polymer composite-based electromagnetic interference (EMI) shielding materials to achieve long-term stability while maintaining high EMI shielding effectiveness (EMI SE), especially undergoing external mechanical stimuli, such as scratches or large deformations. Herein, an electrostatic assembly strategy is adopted to design a healable and segregated carbon nanotube (CNT)/graphene oxide (GO)/polyurethane (PU) composite with excellent and reliable EMI SE, even bearing complex mechanical condition. The negatively charged CNT/GO hybrid is facilely adsorbed on the surface of positively charged PU microsphere to motivate formation of segregated conductive networks in CNT/GO/PU composite, establishing a high EMI SE of 52.7 dB at only 10 wt% CNT/GO loading. The Diels-Alder bonds in PU microsphere endow the CNT/GO/PU composite suffering three cutting/healing cycles with EMI SE retention up to 90%. Additionally, the electrostatic attraction between CNT/GO hybrid and PU microsphere helps to strong interfacial bonding in the composite, resulting in high tensile strength of 43.1 MPa and elongation at break of 626%. The healing efficiency of elongation at break achieves 95% when the composite endured three cutting/healing cycles. This work demonstrates a novel strategy for developing segregated EMI shielding composite with healable features and excellent mechanical performance and shows great potential in the durable and high precision electrical instruments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available