4.5 Article

Sublethal effects of a rapidly spreading native alga on a key herbivore

Journal

ECOLOGY AND EVOLUTION
Volume 11, Issue 18, Pages 12605-12616

Publisher

WILEY
DOI: 10.1002/ece3.8005

Keywords

-

Funding

  1. Endeavour Research Fellowship [ERF_PDR_5888_2017]
  2. Australian Research Council [FT140100322]
  3. Ministerio de Ciencia e Innovacion [CTM2017-86695-C3-1-R]
  4. Australian Research Council [FT140100322] Funding Source: Australian Research Council

Ask authors/readers for more resources

The study reveals that as the opportunistic macrophyte C. filiformis becomes more abundant, the distribution and life-history traits of the herbivore H. erythrogramma are negatively impacted in the surrounding areas, potentially leading to further spread of C. filiformis.
Multiple anthropogenic stressors are causing a global decline in foundation species, including macrophytes, often resulting in the expansion of functionally different, more stressor-tolerant macrophytes. Previously subdominant species may experience further positive demographic feedback if they are exposed to weaker plant-herbivore interactions, possibly via decreased palatability or being structurally different from the species they are replacing. However, the consequences of the spread of opportunistic macrophytes for the local distribution and life history of herbivores are unknown. The green alga, Caulerpa filiformis, previously a subdominant macrophyte on low intertidal-shallow subtidal rock shores, is becoming locally more abundant and has spread into warmer waters across the coast of New South Wales, Australia. In this study, we measured (a) the distribution and abundance of a key consumer, the sea urchin Heliocidaris erythrogramma, across a seascape at sites where C. filiformis has become dominant, (b) performed behavioral field experiments to test the role of habitat selection in determining the local distribution of H. erythrogramma, and (c) consumer experiments to test differential palatability between previously dominant higher quality species like Ecklonia radiata and Sargassum sp. and C. filiformis and the physiological consequences of consuming it. At all sites, urchin densities were positively correlated with distance away from C. filiformis beds, and they actively moved away from beds. Feeding experiments showed that, while urchins consumed C. filiformis, sometimes in equal amounts to higher quality algae, there were strong sublethal consequences associated with C. filiformis consumption, mainly on reproductive potential (gonad size). Specifically, the gonad size of urchins that fed on C. filiformis was equivalent to that in starved urchins. There was also a tendency for urchin mortality to be greater when fed C. filiformis. Overall, strong negative effects on herbivore life-history traits and potentially their survivorship may establish further positive feedback on C. filiformis abundance that contributes to its spread and may mediate shifts from top-down to bottom-up control at locations where C. filiformis has become dominant.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available