4.5 Article

Analytical methods matter too: Establishing a framework for estimating maximum metabolic rate for fishes

Journal

ECOLOGY AND EVOLUTION
Volume 11, Issue 15, Pages 9987-10003

Publisher

WILEY
DOI: 10.1002/ece3.7732

Keywords

active metabolic rate; aerobic metabolism; aquatic respirometry; elasmobranch; maximum exercise; metabolic theory

Funding

  1. Natural Science and Engineering Research Council of Canada (NSERC)
  2. Canada Research Chairs Program

Ask authors/readers for more resources

This study found that analytical choices in estimating maximum metabolic rate in water-breathing animals can affect the comparability of results, recommending the use of a rolling regression model and explicit reporting of analytical methods.
Advances in experimental design and equipment have simplified the collection of maximum metabolic rate (MMR) data for a more diverse array of water-breathing animals. However, little attention has been given to the consequences of analytical choices in the estimation of MMR. Using different analytical methods can reduce the comparability of MMR estimates across species and studies and has consequences for the burgeoning number of macroecological meta-analyses using metabolic rate data. Two key analytical choices that require standardization are the time interval, or regression window width, over which MMR is estimated, and the method used to locate that regression window within the raw oxygen depletion trace. Here, we consider the effect of both choices by estimating MMR for two shark and two salmonid species of different activity levels using multiple regression window widths and three analytical methods: rolling regression, sequential regression, and segmented regression. Shorter regression windows yielded higher metabolic rate estimates, with a risk that the shortest windows (<1-min) reflect more system noise than MMR signal. Rolling regression was the best candidate model and produced the highest MMR estimates. Sequential regression models consistently produced lower relative estimates than rolling regression models, while the segmented regression model was unable to produce consistent MMR estimates across individuals. The time-point of the MMR regression window along the oxygen consumption trace varied considerably across individuals but not across models. We show that choice of analytical method, in addition to more widely understood experimental choices, profoundly affect the resultant estimates of MMR. We recommend that researchers (1) employ a rolling regression model with a reliable regression window tailored to their experimental system and (2) explicitly report their analytical methods, including publishing raw data and code.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available