4.7 Article

In Situ Synthesized Selenium Nanoparticles-Decorated Bacterial Cellulose/Gelatin Hydrogel with Enhanced Antibacterial, Antioxidant, and Anti-Inflammatory Capabilities for Facilitating Skin Wound Healing

Journal

ADVANCED HEALTHCARE MATERIALS
Volume 10, Issue 14, Pages -

Publisher

WILEY
DOI: 10.1002/adhm.202100402

Keywords

antibacterial hydrogels; anti-inflammatory; antioxidants; bacterial cellulose/gelatin/SeNPs hydrogel s; wound healing

Funding

  1. BRICS STI Framework Programme
  2. National Key Research and Development Program of China [2018YFE0123700]
  3. National Natural Science Foundation of China [21774039, 51973076]
  4. Fundamental Research Funds for the Central Universities [2020kfyXJJS035]

Ask authors/readers for more resources

The multifunctional nanocomposite hydrogels based on bacterial cellulose, gelatin, and selenium nanoparticles showed excellent antibacterial, antioxidant, and anti-inflammatory capabilities, as well as promising wound healing performance in a rat full-thickness defect model. The hydrogels demonstrated superior mechanical properties, good swelling ability, flexibility, biodegradability, and biocompatibility, making them a great potential wound dressing for preventing infection and accelerating skin regeneration in clinic.
Bacterial-associated wound infection and antibiotic resistance have posed a major burden on patients and health care systems. Thus, developing a novel multifunctional antibiotic-free wound dressing that cannot only effectively prevent wound infection, but also facilitate wound healing is urgently desired. Herein, a series of multifunctional nanocomposite hydrogels with remarkable antibacterial, antioxidant, and anti-inflammatory capabilities, based on bacterial cellulose (BC), gelatin (Gel), and selenium nanoparticles (SeNPs), are constructed for wound healing application. The BC/Gel/SeNPs nanocomposite hydrogels exhibit excellent mechanical properties, good swelling ability, flexibility and biodegradability, and favorable biocompatibility, as well as slow and sustainable release profiles of SeNPs. The decoration of SeNPs endows the hydrogels with superior antioxidant and anti-inflammatory capability, and outstanding antibacterial activity against both common bacteria (E. coli and S. aureus) and their multidrug-resistant counterparts. Furthermore, the BC/Gel/SeNPs hydrogels show an excellent skin wound healing performance in a rat full-thickness defect model, as evidenced by the significantly reduced inflammation, and the notably enhanced wound closure, granulation tissue formation, collagen deposition, angiogenesis, and fibroblast activation and differentiation. This study suggests that the developed multifunctional BC/Gel/SeNPs nanocomposite hydrogel holds a great promise as a wound dressing for preventing wound infection and accelerating skin regeneration in clinic.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available