4.7 Article

Comparative transcriptome analysis of the gills and hepatopancreas from Macrobrachium rosenbergii exposed to the heavy metal Cadmium (Cd2+)

Journal

SCIENTIFIC REPORTS
Volume 11, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-95709-w

Keywords

-

Funding

  1. Natural Science Foundation of China [31902348]

Ask authors/readers for more resources

Transcriptomic analysis revealed gene expression profiles in the gills and hepatopancreas of Macrobrachium rosenbergii in response to Cd2+ stress. Most differentially expressed genes were down-regulated after Cd2+ exposure, with a significantly higher number of DEGs in the gills compared to the hepatopancreas. Key genes such as metallothionein and Hemocyanin were identified in response to Cd2+ stress.
Heavy metal Cadmium (Cd2+) pollution has become a severe environmental problem for aquatic organisms. In crustaceans, gills (Gi) and hepatopancreas (Hp) play a vital role in the toxicology. However, in Macrobrachium rosenbergill, there are few researches about gill and hepatopancreases responding to Cd2+ stress at a molecular level. In this study, transcriptomic analysis was applied to characterize gene expression profiles of gills and hepatopancreas of M. rosenbergill after Cd2+ exposure for 0 h, 3 h and 3 d. Six cDNA libraries (Gi 0 h, Gi 3 h, Gi 3 d, Hp 0 h, Hp 3 h, and Hp 3 d) were constructed and a total of 66,676 transcripts and 48,991 unigenes were annotated. Furthermore, differentially expressed genes (DEGs) were isolated by comparing the Cd2+ treated time-point libraries (3 h and 3 d group) with the control library (0 h group). The results showed that most of the DEGs were down-regulated after Cd2+ exposure and the number of DEGs among gill groups were significantly higher than those among hepatopancreas groups. GO functional and KEGG pathway analysis suggested many key DEGs in response to the Cd2+ stress, such as metallothionein and Hemocyanin. Additionally, a total of six DEGs were randomly selected to further identify their expressional profile by qPCR. The results indicated that these DEGs were involved in the response to Cd2+. This comparative transcriptome provides valuable molecular information on the mechanisms of responding to Cd2+ stress in M. rosenbergii, which lays the foundation for further understanding of heavy metal stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available