4.6 Article

Effect of VN and TiB2-TiCx Reinforcement on Wear Behavior of Al 7075-Based Composites

Journal

MATERIALS
Volume 14, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/ma14123389

Keywords

VN; 7075 composites; TiB2-TiCx; 7075 composites; microstructure; hardness; friction and wear properties

Funding

  1. Natural Science Basic Research Program of Shaanxi Province [2021JM-429]
  2. National Natural Science Foundation of China [51705391]
  3. Project of equipment pre-research field fund [6140922010301]

Ask authors/readers for more resources

Al 7075 alloy, 15 wt.% VN/7075 composites, and 20 wt.% TiB2-TiCx/7075 composites were prepared by ball milling and subsequent hot-pressing sintering. The composites showed different wear mechanisms and hardness values, with the TiB2-TiCx/7075 composites exhibiting the best tribological properties at medium and low temperatures.
Al 7075 alloy, 15 wt.% VN/7075 composites, and 20 wt.% TiB2-TiCx/7075 composites were prepared by ball milling with subsequent hot-pressing sintering. The microstructure, hardness, and wear properties at room temperature to 200 degrees C of Al 7075-based composites with different reinforcement phases were discussed. The grain uniformity degree values of 15 wt.% VN/7075 composites and 20 wt.% TiB2-TiCx/7075 composites were 0.25 and 0.13, respectively. The reinforcement phase was uniformly distributed in 15 wt.% VN/7075 composites and 20 wt.% TiB2-TiCx/7075 composites, almost no agglomeration occurred. The order of hardness was 20 wt.% TiB2-TiCx/7075 composites (270.2 HV) > 15 wt.% VN/7075 composites (119.5 HV) > Al 7075 (81.8 HV). At the same temperature, the friction coefficient of 15 wt.% VN/7075 composites was the lowest, while the volume wear rate of 20 wt.% TiB2-TiCx/7075 composites was the lowest. With the increase of temperature, the wear mechanism of Al 7075 changed from spalling wear to oxidation wear and adhesion wear. However, the wear mechanisms of 15 wt.% VN/7075 and 20 wt.% TiB2-TiCx/7075 composites changed from abrasive wear at room temperature to wear mechanism (oxidation wear, abrasive wear, and adhesive wear) at medium and low temperature. Comprehensive wear test results indicated that 20 wt.% TiB2-TiCx/7075 composites had excellent tribological properties at medium and low temperature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available