4.6 Article

Flexural Behavior of Polyurethane Concrete Reinforced by Carbon Fiber Grid

Journal

MATERIALS
Volume 14, Issue 18, Pages -

Publisher

MDPI
DOI: 10.3390/ma14185421

Keywords

carbon fiber grid; flexural bearing capacity; four-point bending test; polyurethane concrete

Funding

  1. project of Transportation Innovation and Development Support (Science and Technology) of Jilin Province [2020-1-9]

Ask authors/readers for more resources

In this study, the design of polyurethane concrete was optimized to address the shortcomings of traditional repair materials for anchorage concrete of expansion joints. A carbon fiber grid-polyurethane concrete system was developed to enhance the flexural bearing capacity of the concrete. Through experiments, it was found that the best width of the carbon fiber grid was 80 mm and the optimal number of reinforcement layers was one, showing the potential for widespread application in improving the performance of concrete repair materials in the future.
In view of the problems of traditional repair materials for anchorage concrete of expansion joints, such as ease of damage and long maintenance cycles, the design of polyurethane concrete was optimized in this article, which could be used for rapid repair of concrete in anchorage zone of expansion joints. A new type of carbon fiber grid-polyurethane concrete system was designed, which makes the carbon fiber grid have an excellent synergistic effect with the quick-hardening and high-strength polyurethane concrete, and improved the flexural bearing capacity of the polyurethane concrete. Through the four-point bending test, the influence of the parameters such as the number of grid layers, grid width, and grid density on the flexural bearing capacity of polyurethane concrete beams was tested. The optimum preparation process parameters of carbon fiber grid were obtained to improve the flexural performance of polyurethane concrete. Compared with the Normal specimen, C-80-1's average flexural strength increased by 47.7%, the failure strain along the beam height increased by 431.1%, and the failure strain at the bottom of the beam increased by 68.9%. The best width of the carbon fiber grid was 80 mm, and the best number of reinforcement layers was one layer. The test results show that the carbon fiber grid could improve the flexural bearing capacity of polyurethane concrete. The carbon fiber grid-polyurethane concrete system provides a new idea for rapid repair of the anchorage zone of bridge expansion joints, and solves the problems such as ease of damage and long maintenance cycles of traditional repair materials, which can be widely used in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available