4.6 Article

The Impact of Nano-Al2O3 on the Physical and Strength Properties as Well as on the Morphology of Cement Composite Crack Surfaces in the Early and Later Maturation Age

Journal

MATERIALS
Volume 14, Issue 16, Pages -

Publisher

MDPI
DOI: 10.3390/ma14164441

Keywords

nanoparticles; nano-alumina; compressive strength; fractal dimension

Funding

  1. Rzeszow University of Technology, Rzeszow, Poland [BS.18.001]

Ask authors/readers for more resources

This article explores the effects of aluminum nanoxide on the physical, strength, and structural properties of cement mortars. It is found that the addition of 1% aluminum nanoxide leads to a significant increase in compressive strength and influences the fractal dimensions of the fracture surface profile lines.
This article presents the effect of aluminum nanoxide on the physical, strength and structural properties of cement mortars. The mortars were made with a water to binder ratio of 0.5 and a binder to sand ratio of 1:3; and 1%, 2%, 3% and 4% of aluminum nanoxide, respectively, were used by cement weight. First, the consistency of nano-Al2O3 mortars was tested. Next, after 7 days of sample maturation, compressive and flexural strength tests were carried out and continued after 28 and 90 days of the maturing of the mortars. The best test results were obtained for mortars with the addition of 1% aluminum nanoxide, the compressive strength of which increased by about 20% compared to the reference mortars. The water absorption and rising capillary tests as well as SEM observations were also performed. Another aim of the article is the analysis of the fracture morphology of nano-Al2O3 modified mortars. It is assumed that a change of the microstructure of the hardened cement paste affects not only the properties of the modified mortars but also the roughness of the fractures formed as a result of the destruction of the surface. Roughness analysis was performed with methods and tools relevant to fractal geometry. The fractographic analysis showed a significant influence of the modifier in the form of nano-Al2O3 on the values of fractal dimensions. The lowest values of the fractal dimension D and the fractal dimension of the D-RP roughness profile of the fracture surface profile lines were obtained for nano-Al2O3 modified mortars. The conducted research proved the fractal dimension to be a parameter extremely sensitive to modifications of mortar composition as well as changes related to the maturation time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available